Multiplicative quiver varieties and generalised Ruijs']jsenaars-Schneider models

被引:21
作者
Chalykh, Oleg [1 ]
Fairon, Maxime [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Quivers; Noncommutative geometry; Double Poisson brackets; Quasi-Hamiltonian reduction; Rui[!text type='js']js[!/text]enaars-Schneider system; PREPROJECTIVE ALGEBRAS; INTEGRABLE SYSTEMS; DYNAMICAL-SYSTEMS; CALOGERO; EQUATIONS; INSTANTONS; DUALITY;
D O I
10.1016/j.geomphys.2017.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some classical integrable systems naturally associated with multiplicative quiver varieties for the (extended) cyclic quiver with m vertices. The phase space of our integrable systems is obtained by quasi-Hamiltonian reduction from the space of representations of the quiver. Three families of Poisson-commuting functions are constructed and written explicitly in suitable Darboux coordinates. The case m = 1 corresponds to the tadpole quiver and the Ruijsenaars Schneider system and its variants, while for m > 1 we obtain new integrable systems that generalise the Ruijsenaars Schneider system. These systems and their quantum versions also appeared recently in the context of supersymmetric gauge theory and cyclotomic DAHAs (Braverman et al. [32,34,35] and Kodera and Nakajima [36]), as well as in the context of the Macdonald theory (Chalykh and Etingof, 2013). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:413 / 437
页数:25
相关论文
共 53 条
[1]   Quasi-Poisson manifolds [J].
Alekseev, A ;
Kosmann-Schwarzbach, Y ;
Meinrenken, E .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (01) :3-29
[2]  
Alekseev A, 1998, J DIFFER GEOM, V48, P445
[3]  
Baker TH, 1997, INT MATH RES NOTICES, V1997, P667
[4]  
Baranovsky V, 2003, INT MATH RES NOTICES, V2003, P1155
[5]   Quiver varieties and a noncommutative P2 [J].
Baranovsky, V ;
Ginzburg, V ;
Kuznetsov, A .
COMPOSITIO MATHEMATICA, 2002, 134 (03) :283-318
[6]   Automorphisms and ideals of the Weyl algebra [J].
Berest, Y ;
Wilson, G .
MATHEMATISCHE ANNALEN, 2000, 318 (01) :127-147
[7]  
Berest Y, 2002, INT MATH RES NOTICES, V2002, P1347
[8]   A∞-modules and Calogero-Moser spaces [J].
Berest, Yuri ;
Chalykh, Oleg .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 607 :69-112
[9]   The Picard group of a noncommutative algebraic torus [J].
Berest, Yuri ;
Ramadoss, Ajay ;
Tang, Xiang .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2013, 7 (02) :335-356
[10]   RECOLLEMENT OF DEFORMED PREPROJECTIVE ALGEBRAS AND THE CALOGERO-MOSER CORRESPONDENCE [J].
Berest, Yuri ;
Chalykh, Oleg ;
Eshmatov, Farkhod .
MOSCOW MATHEMATICAL JOURNAL, 2008, 8 (01) :21-37