Nonlinear self-adjointness, conserved quantities, bifurcation analysis and travelling wave solutions of a family of long-wave unstable lubrication model

被引:46
作者
Jhangeer, Adil [1 ]
Raza, Nauman [2 ]
Rezazadeh, Hadi [3 ]
Seadawy, Aly [4 ,5 ]
机构
[1] Namal Inst, Dept Math, 30 KM Talagang Rd, Mianwali 42250, Pakistan
[2] Univ Punjab, Dept Math, Lahore, Pakistan
[3] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[4] Taibah Univ, Fac Sci, Math Dept, Al Madinah Al Munawarah, Saudi Arabia
[5] Beni Suef Univ, Fac Sci, Math Dept, Bani Suwayf, Egypt
来源
PRAMANA-JOURNAL OF PHYSICS | 2020年 / 94卷 / 01期
关键词
Nonlinear self-adjointness; bifurcation analysis; analytic solutions; long-wave unstable lubrication model; 02; 20; Sv; 30; Jr; 11; -i; 47; Ky; KUNDU-LAKSHMANAN EQUATION; OPTICAL SOLITONS; EXPANSION METHOD; EVOLUTION; SUBCLASSES; LAWS;
D O I
10.1007/s12043-020-01961-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper investigates a class of long-wave unstable lubrication model using Lie theory. A nonlinear self-adjoint classification of the considered equation is carried out. Without having to go into microscopic details of the physical aspects, non-trivial conservation laws are computed. Then, minimal set of Lie point symmetries of the discussed model is classified up to one-dimensional conjugacy classes which are further utilised one by one to construct the similarity variables to reduce the dimension of the considered model. After that, all possible phase trajectories are classified with respect to the parameters of the equation. Some travelling wave and kink-wave solutions are also showed and graphical representations are displayed to depict their propagation.
引用
收藏
页数:9
相关论文
共 40 条
[31]   Self-adjoint sub-classes of generalized thin film equations [J].
Santos Bruzon, Maria ;
Luz Gandarias, Maria ;
Ibragimov, Nail H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :307-313
[32]   Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves [J].
Seadawy, Aly R. ;
Lu, Dianchen ;
Iqbal, Mujahid .
PRAMANA-JOURNAL OF PHYSICS, 2019, 93 (01)
[33]   Solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili dynamic equation in dust-acoustic plasmas [J].
Seadawy, Aly R. .
PRAMANA-JOURNAL OF PHYSICS, 2017, 89 (03)
[34]   UBER DIE ZUORDNUNG ZWISCHEN INVARIANZEIGENSCAFTEN UND ERHALTUNGSSATZEN [J].
STEUDEL, H .
ZEITSCHRIFT FUR NATURFORSCHUNG PART A-ASTROPHYSIK PHYSIK UND PHYSIKALISCHE CHEMIE, 1962, A 17 (02) :129-&
[35]   Dynamical Behavior of Supernonlinear Positron-Acoustic Periodic Waves and Chaos in Nonextensive Electron-Positron-Ion Plasmas [J].
Tamang, Jharna ;
Saha, Asit .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2019, 74 (06) :499-511
[36]  
Tariq KU, 2018, PRAMANA-J PHYS, V91, DOI 10.1007/s12043-018-1641-y
[37]   On the nonlinear self-adjointness of a class of fourth-order evolution equations [J].
Tracina, R. ;
Bruzon, M. S. ;
Gandarias, M. L. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 :299-304
[38]   A new family of higher order nonlinear degenerate parabolic equations [J].
Ulusoy, Suleyman .
NONLINEARITY, 2007, 20 (03) :685-712
[39]   Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation [J].
Wang, DS ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2005, 25 (03) :601-610
[40]   The (G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics [J].
Wang, Mingliang ;
Li, Xiangzheng ;
Zhang, Jinliang .
PHYSICS LETTERS A, 2008, 372 (04) :417-423