(LOGARITHMIC) DENSITIES FOR AUTOMATIC SEQUENCES ALONG PRIMES AND SQUARES
被引:1
作者:
Adamczewski, Boris
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, FranceUniv Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Adamczewski, Boris
[1
]
Drmota, Michael
论文数: 0引用数: 0
h-index: 0
机构:Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Drmota, Michael
Muellner, Clemens
论文数: 0引用数: 0
h-index: 0
机构:Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
Muellner, Clemens
机构:
[1] Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, UMR 5208,Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
In this paper we develop a method to transfer density results for primitive automatic sequences to logarithmic-density results for general automatic sequences. As an application we show that the logarithmic densities of any automatic sequence along squares (n(2))(n >= 0) and primes (p(n))(n >= 1) exist and are computable. Furthermore, we give for these subsequences a criterion to decide whether the densities exist, in which case they are also computable. In particular in the prime case these densities are all rational. We also deduce from a recent result of the third author and Lemanczyk that all subshifts generated by automatic sequences are orthogonal to any bounded multiplicative aperiodic function.
机构:
Univ Calif Los Angeles, Dept Math, 405 Hilgard Ave, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Math, 405 Hilgard Ave, Los Angeles, CA 90095 USA
Tao, Terence
[J].
FORUM OF MATHEMATICS PI,
2016,
4
[33]
Terence Tao, 2017, NUMBER THEORY DIOPHA, P391
机构:
Univ Calif Los Angeles, Dept Math, 405 Hilgard Ave, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Math, 405 Hilgard Ave, Los Angeles, CA 90095 USA
Tao, Terence
[J].
FORUM OF MATHEMATICS PI,
2016,
4
[33]
Terence Tao, 2017, NUMBER THEORY DIOPHA, P391