On the rank of x1(Ham)

被引:0
作者
Pedroza, Andres [1 ]
机构
[1] Univ Colima, Fac Ciencias, Colima, Mexico
关键词
HOMOTOPY LIE-ALGEBRA; SYMPLECTOMORPHISM GROUPS; HAMILTONIAN LOOPS; TOPOLOGY;
D O I
10.2140/agt.2022.22.1325
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any positive integer k there exists a closed symplectic 4-manifold such that the rank of the fundamental group of the group of Hamiltonian diffeomor-phisms is at least k.
引用
收藏
页码:1325 / 1336
页数:13
相关论文
共 17 条
[1]   Topology of symplectomorphism groups of rational ruled surfaces [J].
Abreu, M ;
McDuff, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :971-1009
[2]   The Homotopy Lie Algebra of Symplectomorphism Groups of 3-Fold Blowups of (S2 x S2, σstd ⊕ σstd) [J].
Anjos, Silvia ;
Eden, Sinan .
MICHIGAN MATHEMATICAL JOURNAL, 2019, 68 (01) :71-126
[3]   The homotopy Lie algebra of symplectomorphism groups of 3-fold blow-ups of the projective plane [J].
Anjos, Silvia ;
Pinsonnault, Martin .
MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (1-2) :245-292
[4]   Fukaya categories of surfaces, spherical objects and mapping class groups [J].
Auroux, Denis ;
Smith, Ivan .
FORUM OF MATHEMATICS SIGMA, 2021, 9
[5]  
Evans JD, 2011, J SYMPLECT GEOM, V9, P45
[6]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347
[7]   COMPACTLY SUPPORTED HAMILTONIAN LOOPS WITH A NON-ZERO CALABI INVARIANT [J].
Kislev, Asaf .
ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 :80-88
[8]  
Lalonde F, 2004, DUKE MATH J, V122, P347
[9]  
Li J, 2019, Arxiv, DOI arXiv:1911.11073
[10]   SYMPLECTIC (-2)-SPHERES AND THE SYMPLECTOMORPHISM GROUP OF SMALL RATIONAL 4-MANIFOLDS [J].
Li, Jun ;
Li, Tian-Jun .
PACIFIC JOURNAL OF MATHEMATICS, 2020, 304 (02) :561-606