Adsorption, Folding, and Packing of an Amphiphilic Peptide at the Air/Water Interface

被引:13
作者
Engin, Ozge [1 ]
Sayar, Mehmet [1 ]
机构
[1] Koc Univ, Coll Engn, TR-34450 Istanbul, Turkey
关键词
MOLECULAR-DYNAMICS SIMULATIONS; BETA-HAIRPIN PEPTIDE; FREE-ENERGY LANDSCAPE; DE-NOVO DESIGN; EXPLICIT WATER; IMPLICIT SOLVENT; TURN RESIDUES; MONTE-CARLO; SIDE-CHAIN; PROTEIN-G;
D O I
10.1021/jp206327y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Peptide oligomers play an essential role as model compounds for identifying key motifs in protein structure formation and protein aggregation. Here, we present our results, based on extensive molecular dynamics simulations, on adsorption, folding, and packing within a surface monolayer of an amphiphilic peptide at the air/water interface. Experimental results suggest that these molecules spontaneously form ordered monolayers at the interface, adopting a beta-hairpin-like structure within the surface layer. Our results reveal that the beta-hairpin structure can be observed both in bulk and at the air/water interface. However, the presence of an interface leads to ideal partitioning of the hydrophobic and hydrophilic residues, and therefore reduces the conformational space for the molecule and increases the stability of the hairpin structure. We obtained the adsorption free energy of a single beta-hairpin at the air/water interface, and analyzed the enthalpic and entropic contributions. The adsorption process is favored by two main factors: (1) Free-energy reduction due to desolvation of the hydrophobic side chains of the peptide and release of the water molecules which form a cage around these hydrophobic groups in bulk water. (2) Reduction of the total air/water contact area at the interface upon adsorption of the peptide amphiphile. By performing mutations on the original molecule, we demonstrated the relative role of key design features of the peptide. Finally, by analyzing the potential of mean force among two peptides at the interface, we investigated possible packing mechanisms for these molecules within the surface monolayer.
引用
收藏
页码:2198 / 2207
页数:10
相关论文
共 82 条
[1]   pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases [J].
Aggeli, A ;
Bell, M ;
Carrick, LM ;
Fishwick, CWG ;
Harding, R ;
Mawer, PJ ;
Radford, SE ;
Strong, AE ;
Boden, N .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (32) :9619-9628
[2]  
Alba d. E., 1999, PROTEIN SCI, V8, P2234
[3]  
Alvarado R.M., 1997, J MOL BIOL, V273, P898
[4]   THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS [J].
BERENDSEN, HJC ;
GRIGERA, JR ;
STRAATSMA, TP .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (24) :6269-6271
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]   Formation and stability of β-hairpin structures in polypeptides [J].
Blanco, F ;
Ramírez-Alvarado, M ;
Serrano, L .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (01) :107-111
[7]   β-Hairpin stability and folding:: Molecular dynamics studies of the first β-hairpin of tendamistat [J].
Bonvin, AMJJ ;
van Gunsteren, WF .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (01) :255-268
[8]   Self-assembling materials for therapeutic delivery [J].
Branco, Monica C. ;
Schneider, Joel P. .
ACTA BIOMATERIALIA, 2009, 5 (03) :817-831
[9]   Macromolecular diffusion and release from self-assembled β-hairpin peptide hydrogels [J].
Branco, Monica C. ;
Pochan, Darrin J. ;
Wagner, Norman J. ;
Schneider, Joel P. .
BIOMATERIALS, 2009, 30 (07) :1339-1347
[10]  
Brien T. D., 1993, VET PATHOL, V30, P317