Approximation theory for nonorientable minimal surfaces and applications

被引:9
|
作者
Alarcon, Antonio [1 ]
Lopez, Francisco J. [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
R-3; R3; EXISTENCE; NUMBER;
D O I
10.2140/gt.2015.19.1015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a version of the classical Runge and Mergelyan uniform approximation theorems for nonorientable minimal surfaces in Euclidean 3-space R-3. Then we obtain some geometric applications. Among them, we emphasize the following ones: A Gunning-Narasimhan-type theorem for nonorientable conformal surfaces. An existence theorem for nonorientable minimal surfaces in R-3 with arbitrary conformal structure, properly projecting into a plane. An existence result for nonorientable minimal surfaces in R-3 with arbitrary conformal structure and Gauss map omitting one projective direction.
引用
收藏
页码:1015 / 1061
页数:47
相关论文
共 50 条