CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES
|
2011年
/
54卷
/
04期
关键词:
isometry;
local isometry;
Lipschitz function;
LOCAL AUTOMORPHISMS;
LINEAR ISOMETRIES;
DERIVATIONS;
D O I:
10.4153/CMB-2011-025-5
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (X, d) be a metric space, and let Lip(X) denote the Banach space of all scalar-valued bounded Lipschitz functions f on X endowed with one of the natural norms parallel to f parallel to = max{parallel to f parallel to(infinity), L(f)} or parallel to f parallel to = parallel to f parallel to(infinity) + L(f), where L(f) is the Lipschitz constant of f. It is said that the isometry group of Lip(X) is canonical if every surjective linear isometry of Lip(X) is induced by a surjective isometry of X. In this paper we prove that if X is bounded separable and the isometry group of Lip(X) is canonical, then every 2-local isometry of Lip(X) is a surjective linear isometry. Furthermore, we give a complete description of all 2-local isometries of Lip(X) when X is bounded.
机构:
Univ Jaume 1, Dept Matemat, Campus Riu Sec, Castellon de La Plana 12071, SpainUniv Jaume 1, Dept Matemat, Campus Riu Sec, Castellon de La Plana 12071, Spain
Font, Juan J.
Hosseini, Maliheh
论文数: 0引用数: 0
h-index: 0
机构:
KN Toosi Univ Technol, Fac Math, Tehran 163151618, IranUniv Jaume 1, Dept Matemat, Campus Riu Sec, Castellon de La Plana 12071, Spain