Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum

被引:75
作者
Rancillac, A [1 ]
Crépel, F [1 ]
机构
[1] Univ Paris 06, UMR 7102, Neurobiol Proc Adaptatifs, Paris, France
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2004年 / 554卷 / 03期
关键词
D O I
10.1113/jphysiol.2003.055871
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Various forms of synaptic plasticity underlying motor learning have already been wen characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This UP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced UP at PF-SC synapses. But in this case, UP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic UP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.
引用
收藏
页码:707 / 720
页数:14
相关论文
共 61 条
[1]  
ABE T, 1992, J BIOL CHEM, V267, P13361
[2]   REDUCED HIPPOCAMPAL LONG-TERM POTENTIATION AND CONTEXT-SPECIFIC DEFICIT IN ASSOCIATIVE LEARNING IN MGLUR1 MUTANT MICE [J].
AIBA, A ;
CHEN, C ;
HERRUP, K ;
ROSENMUND, C ;
STEVENS, CF ;
TONEGAWA, S .
CELL, 1994, 79 (02) :365-375
[3]   Kainate receptors regulate unitary IPSCs elicited in pyramidal cells by fast-spiking interneurons in the neocortex [J].
Ali, AB ;
Rossier, J ;
Staiger, JF ;
Audinat, E .
JOURNAL OF NEUROSCIENCE, 2001, 21 (09) :2992-2999
[4]  
Atluri PP, 1998, J NEUROSCI, V18, P8214
[5]   Direct and indirect interactions between cannabinoid CB1 receptor and group II metabotropic glutamate receptor signalling in layer V pyramidal neurons from the rat prefrontal cortex [J].
Barbara, JG ;
Auclair, N ;
Roisin, MP ;
Otani, S ;
Valjent, E ;
Caboche, J ;
Soubrie, P ;
Crepel, F .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2003, 17 (05) :981-990
[6]   THE METABOTROPIC GLUTAMATE-RECEPTOR (MGLUR1-ALPHA) IS CONCENTRATED AT PERISYNAPTIC MEMBRANE OF NEURONAL SUBPOPULATIONS AS DETECTED BY IMMUNOGOLD REACTION [J].
BAUDE, A ;
NUSSER, Z ;
ROBERTS, JDB ;
MULVIHILL, E ;
MCILHINNEY, RAJ ;
SOMOGYI, P .
NEURON, 1993, 11 (04) :771-787
[7]   THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY - ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL-CORTEX [J].
BIENENSTOCK, EL ;
COOPER, LN ;
MUNRO, PW .
JOURNAL OF NEUROSCIENCE, 1982, 2 (01) :32-48
[8]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[9]   LOCALIZATION OF NITRIC-OXIDE SYNTHASE INDICATING A NEURAL ROLE FOR NITRIC-OXIDE [J].
BREDT, DS ;
HWANG, PM ;
SNYDER, SH .
NATURE, 1990, 347 (6295) :768-770
[10]   Quantal events shape cerebellar interneuron firing [J].
Carter, AG ;
Regehr, WG .
NATURE NEUROSCIENCE, 2002, 5 (12) :1309-1318