Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime

被引:23
作者
Benedikter, Niels [1 ]
Phan Thimh Nam [2 ]
Porta, Marcello [3 ]
Schlein, Benjamin [4 ]
Seiringer, Robert [1 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Ludwig Maximilians Univ Munchen, Dept Math, Theresienstr 39, D-80333 Munich, Germany
[3] Univ Tubingen, Dept Math, Morgenstelle 10, D-72076 Tubingen, Germany
[4] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
奥地利科学基金会; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
GROUND-STATE ENERGY; ELECTRON-GAS; COLLECTIVE DESCRIPTION; INTERACTING FERMIONS; EXCITATION SPECTRUM; ARBITRARY DIMENSION; ONE-COMPONENT; HIGH-DENSITY; BOSONIZATION; ATOMS;
D O I
10.1007/s00220-019-03505-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While Hartree-Fock theory is well established as a fundamental approximation for interacting fermions, it has been unclear how to describe corrections to it due to many-body correlations. In this paper we start from the Hartree-Fock state given by plane waves and introduce collective particle-hole pair excitations. These pairs can be approximately described by a bosonic quadratic Hamiltonian. We use Bogoliubov theory to construct a trial state yielding a rigorous Gell-Mann-Brueckner-type upper bound to the ground state energy. Our result justifies the random-phase approximation in the mean-field scaling regime, for repulsive, regular interaction potentials.
引用
收藏
页码:2097 / 2150
页数:54
相关论文
共 67 条
[1]  
[Anonymous], 2005, Quantum Theory of the Electron Liquid
[2]   THEORY OF ELECTRON-GAS AS A SYSTEM OF INTERACTING COLLECTIVE EXCITATIONS .1. BOSON FORMALISM [J].
ARPONEN, J ;
PAJANNE, E .
ANNALS OF PHYSICS, 1975, 91 (02) :450-480
[3]   ACCURACY OF MEAN-FIELD APPROXIMATIONS FOR ATOMS AND MOLECULES [J].
BACH, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (02) :295-310
[4]   ERROR BOUND FOR THE HARTREE-FOCK ENERGY OF ATOMS AND MOLECULES [J].
BACH, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (03) :527-548
[5]  
Benedikter N.., 2016, EFFECTIVE EVOLUTION, V7
[6]  
Benedikter N, 2014, MATH RESULTS QUANTUM
[7]   The Dirac-Frenkel Principle for Reduced Density Matrices, and the Bogoliubov-de Gennes Equations [J].
Benedikter, Niels ;
Sok, Jeremy ;
Solovej, Jan Philip .
ANNALES HENRI POINCARE, 2018, 19 (04) :1167-1214
[8]   Interaction Corrections to Spin-Wave Theory in the Large-S Limit of the Quantum Heisenberg Ferromagnet [J].
Benedikter, Niels .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
[9]   Mean-Field Evolution of Fermionic Mixed States [J].
Benedikter, Niels ;
Jaksic, Vojkan ;
Porta, Marcello ;
Saffirio, Chiara ;
Schlein, Benjamin .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (12) :2250-2303
[10]   Mean-Field Evolution of Fermionic Systems [J].
Benedikter, Niels ;
Porta, Marcello ;
Schlein, Benjamin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (03) :1087-1131