A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries

被引:273
作者
Luo, Jian [1 ]
Hu, Bo [1 ]
Debruler, Camden [1 ]
Liu, Tianbiao Leo [1 ]
机构
[1] Utah State Univ, Chem & Biochem, 0300 Old Main Hill, Logan, UT 84322 USA
关键词
extended viologen; molecular engineering; redox flow battery; TEMPO; ENERGY; ELECTROLYTES; POWER; CATHOLYTE;
D O I
10.1002/anie.201710517
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Extending the conjugation of viologen by a planar thiazolo[5,4-d]thiazole (TTz) framework and functionalizing the pyridinium with hydrophilic ammonium groups yielded a highly water-soluble pi-conjugation extended viologen, 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(3-(trimethylammonio)propyl)pyridin-1-ium) tetrachloride, [(NPr)(2)TTz]Cl-4, as a novel two-electron storage anolyte for aqueous organic redox flow battery (AORFB) applications. Its physical and electrochemical properties were systematically investigated. Paired with 4-trimethylammonium-TEMPO (N-Me-TEMPO) as catholyte, [(NPr)(2)TTz]Cl-4 enables a 1.44 V AORFB with a theoretical energy density of 53.7 Wh L-1. A demonstrated [(NPr)(2)TTz]Cl-4/N-Me-TEMPO AORFB delivered an energy efficiency of 70% and 99.97% capacity retention per cycle.
引用
收藏
页码:231 / 235
页数:5
相关论文
共 38 条
[1]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[2]   ELECTROCHEMISTRY OF THE VIOLOGENS [J].
BIRD, CL ;
KUHN, AT .
CHEMICAL SOCIETY REVIEWS, 1981, 10 (01) :49-82
[3]   A Highly Concentrated Catholyte Enabled by a Low-Melting-Point Ferrocene Derivative [J].
Cong, Guangtao ;
Zhou, Yucun ;
Li, Zhejun ;
Lu, Yi-Chun .
ACS ENERGY LETTERS, 2017, 2 (04) :869-875
[4]   Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study [J].
Ding, Yu ;
Li, Yafei ;
Yu, Guihua .
CHEM, 2016, 1 (05) :790-801
[5]   Computational design of molecules for an all-quinone redox flow battery [J].
Er, Suleyman ;
Suh, Changwon ;
Marshak, Michael P. ;
Aspuru-Guzik, Alan .
CHEMICAL SCIENCE, 2015, 6 (02) :885-893
[6]   Anthraquinone Derivatives in Aqueous Flow Batteries [J].
Gerhardt, Michael R. ;
Tong, Liuchuan ;
Gomez-Bombarelli, Rafael ;
Chen, Qing ;
Marshak, Michael P. ;
Galvin, Cooper J. ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
ADVANCED ENERGY MATERIALS, 2017, 7 (08)
[7]   Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries [J].
Hu, Bo ;
Seefeldt, Christopher ;
DeBruler, Camden ;
Liu, T. Leo .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (42) :22137-22145
[8]   Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries [J].
Huang, Jinhua ;
Cheng, Lei ;
Assary, Rajeev S. ;
Wang, Peiqi ;
Xue, Zheng ;
Burrell, Anthony K. ;
Curtiss, Larry A. ;
Zhang, Lu .
ADVANCED ENERGY MATERIALS, 2015, 5 (06)
[9]   Next-Generation, High-Energy-Density Redox Flow Batteries [J].
Huang, Qizhao ;
Wang, Qing .
CHEMPLUSCHEM, 2015, 80 (02) :312-+
[10]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+