THE SCALING LIMIT OF THE MINIMUM SPANNING TREE OF THE COMPLETE GRAPH

被引:36
作者
Addario-Berry, Louigi [1 ]
Broutin, Nicolas [2 ]
Goldschmidt, Christina [3 ,4 ]
Miermont, Gregory [5 ]
机构
[1] McGill Univ, Dept Math & Stat, 805 Sherbrooke W, Montreal, PQ H3A 2K6, Canada
[2] INRIA Rocquencourt Paris, Projet RAP, F-78153 Le Chesnay, France
[3] Univ Oxford, Dept Stat, 24-29 St Giles, Oxford OX1 3LB, England
[4] Univ Oxford, Lady Margaret Hall, 24-29 St Giles, Oxford OX1 3LB, England
[5] Ecole Normale Super Lyon, UMPA, 46 Allee Italie, F-69364 Lyon 07, France
基金
加拿大自然科学与工程研究理事会; 英国工程与自然科学研究理事会;
关键词
Minimum spanning tree; scaling limit; R-tree; R-graph; Gromov-Hausdorff-Prokhorov distance; critical random graphs; INVASION PERCOLATION; COMBINATORIAL OPTIMIZATION; THEOREM; GROWTH; LENGTH; ASYMPTOTICS; HISTORY;
D O I
10.1214/16-AOP1132
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the minimum spanning tree (MST) of the complete graph with n vertices, when edges are assigned independent random weights. Endow this tree with the graph distance renormalized by n(1/3) and with the uniform measure on its vertices. We show that the resulting space converges in distribution as n -> infinity to a random compact measured metric space in the Gromov-Hausdorff-Prokhorov topology. We additionally show that the limit is a random binary R-tree and has Minkowski dimension 3 almost surely. In particular, its law is mutually singular with that of the Brownian continuum random tree or any resealed version thereof. Our approach relies on a coupling between the MST problem and the Erdos-Renyi random graph. We exploit the explicit description of the scaling limit of the Erdos-Renyi random graph in the so-called critical window, established in [Probab. Theory Related Fields 152 (2012) 367-406], and provide a similar description of the scaling limit for a "critical minimum spanning forest" contained within the MST. In order to accomplish this, we introduce the notion of R-graphs, which generalise R-trees, and are of independent interest.
引用
收藏
页码:3075 / 3144
页数:70
相关论文
共 86 条
[1]   A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces [J].
Abraham, Romain ;
Delmas, Jean-Francois ;
Hoscheit, Patrick .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-21
[2]   The continuum limit of critical random graphs [J].
Addario-Berry, L. ;
Broutin, N. ;
Goldschmidt, C. .
PROBABILITY THEORY AND RELATED FIELDS, 2012, 152 (3-4) :367-406
[3]   Critical random graphs: limiting constructions and distributional properties [J].
Addario-Berry, L. ;
Broutin, N. ;
Goldschmidt, C. .
ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 :741-775
[4]   Critical Random Graphs and the Structure of a Minimum Spanning Tree [J].
Addario-Berry, L. ;
Broutin, N. ;
Reed, B. .
RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) :323-347
[5]  
Addario-Berry L, 2013, LOCAL WEAK LIMIT MIN
[6]   INVASION PERCOLATION ON THE POISSON-WEIGHTED INFINITE TREE [J].
Addario-Berry, Louigi ;
Griffiths, Simon ;
Kang, Ross J. .
ANNALS OF APPLIED PROBABILITY, 2012, 22 (03) :931-970
[7]  
Aizenman M, 1999, RANDOM STRUCT ALGOR, V15, P319, DOI 10.1002/(SICI)1098-2418(199910/12)15:3/4<319::AID-RSA8>3.0.CO
[8]  
2-G
[9]  
Aldous D, 2004, ENCYL MATH SCI, V110, P1
[10]  
Aldous D, 1997, ANN PROBAB, V25, P812