Towards Analyzing the Performance of Hybrid Edge-Cloud Processing

被引:23
|
作者
Loghin, Dumitrel [1 ]
Ramapantulu, Lavanya [2 ]
Teo, Yong Meng [1 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
[2] Int Inst Informat Technol, Hyderabad, India
来源
2019 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE) | 2019年
关键词
edge computing; cloud computing; hybrid edge-cloud computing; performance analysis; analytic model; measurements; TIME; COST;
D O I
10.1109/EDGE.2019.00029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
While edge computing is gaining traction, organizations operating in geographically distributed locations are still using cloud computing to collect and post-process data. In this context, it is useful to analyze the performance trade-offs of cloud-only, edge-only and hybrid edge-cloud processing. To facilitate this analysis, we provide an analytic model validated by measurements on representative edge and cloud platforms. Our model is easy to apply even without performing measurements on the target edge hardware, as long as useful performance specifications are available. Our measurement-driven analysis reveals a diverse performance landscape where there is no clear winner among cloud-only, edge-only and hybrid processing. However, application characteristics and edge-cloud transfer bandwidth are the key factors affecting performance.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [31] A Survey on Edge and Edge-Cloud Computing Assisted Cyber-Physical Systems
    Cao, Kun
    Hu, Shiyan
    Shi, Yang
    Colombo, Armando
    Karnouskos, Stamatis
    Li, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (11) : 7806 - 7819
  • [32] Edge-Cloud Continuum Solutions for Urban Mobility Prediction and Planning
    Belcastro, Loris
    Marozzo, Fabrizio
    Orsino, Alessio
    Talia, Domenico
    Trunfio, Paolo
    IEEE ACCESS, 2023, 11 : 38864 - 38874
  • [33] An Experimental Study on the Impact of Execution Location in Edge-Cloud Computing
    Melissourgos, Dimitrios
    Wang, Sishun
    Chen, Shigang
    Zhang, Youlin
    Odegbile, Olufemi
    Wang, Yuanda
    2020 6TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2020), 2020, : 145 - 151
  • [34] Split Edge-Cloud Neural Networks for Better Adversarial Robustness
    Douch, Salmane
    Abid, Mohamed Riduan
    Zine-Dine, Khalid
    Bouzidi, Driss
    Benhaddou, Driss
    IEEE ACCESS, 2024, 12 : 158854 - 158865
  • [35] Resource Allocation for Distributed Machine Learning at the Edge-Cloud Continuum
    Sartzetakis, Ippokratis
    Soumplis, Polyzois
    Pantazopoulos, Panagiotis
    Katsaros, Konstantinos V.
    Sourlas, Vasilis
    Varvarigos, Emmanouel
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5017 - 5022
  • [36] Dynamic Service Provisioning in the Edge-Cloud Continuum With Bounded Resources
    Cohen, Itamar
    Chiasserini, Carla Fabiana
    Giaccone, Paolo
    Scalosub, Gabriel
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (06) : 3096 - 3111
  • [37] Towards Efficient HW Acceleration in Edge-Cloud Infrastructures: The SERRANO Approach Invited Paper
    Ferikoglou, Aggelos
    Oroutzoglou, Ioannis
    Kokkinis, Argyris
    Danopoulos, Dimitrios
    Masouros, Dimosthenis
    Chondrogiannis, Efthymios
    Gomez, Aitor Fernandez
    Kretsis, Aristotelis
    Kokkinos, Panagiotis
    Varvarigos, Emmanouel
    Siozios, Kostas
    EMBEDDED COMPUTER SYSTEMS: ARCHITECTURES, MODELING, AND SIMULATION, SAMOS 2021, 2022, 13227 : 354 - 367
  • [38] An edge-cloud integrated framework for flexible and dynamic stream analytics
    Wang, Xin
    Khan, Azim
    Wang, Jianwu
    Gangopadhyay, Aryya
    Busart, Carl
    Freeman, Jade
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 137 : 323 - 335
  • [39] CoEdge: Exploiting the Edge-Cloud Collaboration for Faster Deep Learning
    Hu, Liangyan
    Sun, Guodong
    Ren, Yanlong
    IEEE ACCESS, 2020, 8 : 100533 - 100541
  • [40] Learning to Optimize Workflow Scheduling for an Edge-Cloud Computing Environment
    Zhu, Kaige
    Zhang, Zhenjiang
    Zeadally, Sherali
    Sun, Feng
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (03) : 897 - 912