Towards Analyzing the Performance of Hybrid Edge-Cloud Processing

被引:23
|
作者
Loghin, Dumitrel [1 ]
Ramapantulu, Lavanya [2 ]
Teo, Yong Meng [1 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Singapore, Singapore
[2] Int Inst Informat Technol, Hyderabad, India
来源
2019 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING (IEEE EDGE) | 2019年
关键词
edge computing; cloud computing; hybrid edge-cloud computing; performance analysis; analytic model; measurements; TIME; COST;
D O I
10.1109/EDGE.2019.00029
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
While edge computing is gaining traction, organizations operating in geographically distributed locations are still using cloud computing to collect and post-process data. In this context, it is useful to analyze the performance trade-offs of cloud-only, edge-only and hybrid edge-cloud processing. To facilitate this analysis, we provide an analytic model validated by measurements on representative edge and cloud platforms. Our model is easy to apply even without performing measurements on the target edge hardware, as long as useful performance specifications are available. Our measurement-driven analysis reveals a diverse performance landscape where there is no clear winner among cloud-only, edge-only and hybrid processing. However, application characteristics and edge-cloud transfer bandwidth are the key factors affecting performance.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [1] Towards Characterization of Edge-Cloud Continuum
    Khalyeyev, Danylo
    Bures, Tomas
    Hnetynka, Petr
    SOFTWARE ARCHITECTURE. ECSA 2022 TRACKS AND WORKSHOPS, 2023, 13928 : 215 - 230
  • [2] Smart Transportation: An Edge-Cloud Hybrid Computing Perspective
    Jaisimha, Aashish
    Khan, Salman
    Anisha, B. S.
    Kumar, P. Ramakanth
    INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES, ICICCT 2019, 2020, 89 : 1263 - 1271
  • [3] Towards Optimal Application Offloading in Heterogeneous Edge-Cloud Computing
    Ji, Tingxiang
    Wan, Xili
    Guan, Xinjie
    Zhu, Aichun
    Ye, Feng
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (11) : 3259 - 3272
  • [4] Toward a Performance-Based Trustworthy Edge-Cloud Continuum
    Dhanapala, Indika
    Bharti, Sourabh
    McGibney, Alan
    Rea, Susan
    IEEE ACCESS, 2024, 12 : 99201 - 99212
  • [5] Towards a Reference Component Model of Edge-Cloud Continuum
    Khalyeyev, Danylo
    Bures, Tomas
    Hnetynka, Petr
    2023 IEEE 20TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION, ICSA-C, 2023, : 91 - 95
  • [6] Edge-Cloud Architectures for Hybrid Energy Management Systems: A Comprehensive Review
    Boiko, Olha
    Komin, Anton
    Malekian, Reza
    Davidsson, Paul
    IEEE SENSORS JOURNAL, 2024, 24 (10) : 15748 - 15772
  • [7] Edge-Cloud Collaborative Computation Offloading for Mixed Traffic
    Li, Qirui
    Guo, Mian
    Peng, Zhiping
    Cui, Delong
    He, Jieguang
    IEEE SYSTEMS JOURNAL, 2023, 17 (03): : 5023 - 5034
  • [8] IoT Application Modules Placement and Dynamic Task Processing in Edge-Cloud Computing
    Fang, Juan
    Ma, Aonan
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16) : 12771 - 12781
  • [9] A Survey on Task Scheduling in Edge-Cloud
    Subham Kumar Sahoo
    Sambit Kumar Mishra
    SN Computer Science, 6 (3)
  • [10] IoT Microservice Deployment in Edge-Cloud Hybrid Environment Using Reinforcement Learning
    Chen, Lulu
    Xu, Yangchuan
    Lu, Zhihui
    Wu, Jie
    Gai, Keke
    Hung, Patrick C. K.
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16): : 12610 - 12622