Hard Exudates Detection for Diabetic Retinopathy Early Diagnosis Using Deep Learning

被引:1
作者
Jancy, P. Leela [1 ]
Lazha, A. [2 ]
Prabha, R. [1 ]
Sridevi, S. [3 ]
Thenmozhi, T. [1 ]
机构
[1] Sri SaiRam Inst Technol, Chennai, Tamil Nadu, India
[2] Sri SaiRam Siddha Med Coll & Res Ctr, Chennai, Tamil Nadu, India
[3] Vels Inst Sci Technol & Adv Studies, Chennai, Tamil Nadu, India
来源
SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2021 | 2022年 / 93卷
关键词
Diabetes mellitus; Classification; Convolution neural networks (CNN); Diabetic retinopathy (DR); Hard exudates; Microaneurysm; Deep learning; CLASSIFICATION;
D O I
10.1007/978-981-16-6605-6_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetic retinopathy is the complication of the eye caused due to diabetes mellitus. It is caused due to high glucose level in blood which damages the blood vessels at the back of the eye namely retina. The abnormal blood vessels swell and leak into retina. The microstructures such as microaneurysm, exudates (hard/soft) will occupy the retina area which leads to vision threatening. Nowadays, in medical field, computer-aided systems are performing a promising work in terms of object recognizing, localization, classification, segmentation and analysis of images with the help of deep neural networks. Since diabetic retinopathy is irreversible, detection of early stages of diabetic retinopathy is needed. If it left without proper diagnosis and treatment, itwill lead to vision loss. Detection of hard exudates indicates the presence of diabetic retinopathy. The early sign of diabetic retinopathy is the formation of hard exudates in retina. In this method, the main aim is to detect the presence of hard exudates in the retinal image using deep convolution neural network.
引用
收藏
页码:309 / 319
页数:11
相关论文
共 16 条
[1]  
Abdar A.K., 2020, AUTOMATIC DETECTION
[2]   Discriminative Feature Learning for Skin Disease Classification Using Deep Convolutional Neural Network [J].
Ahmad, Belal ;
Usama, Mohd ;
Huang, Chuen-Min ;
Hwang, Kai ;
Hossain, M. Shamim ;
Muhammad, Ghulam .
IEEE ACCESS, 2020, 8 :39025-39033
[3]   Skin Lesion Classification Using Convolutional Neural Network With Novel Regularizer [J].
Albahar, Marwan Ali .
IEEE ACCESS, 2019, 7 :38306-38313
[4]  
Bharkad S, 2018, P 2 INT C COMP METH
[5]  
Ladkat A.S., 2017, 2016 INT C INV COMP
[6]  
Maya K.V., 2019, INT CONF ELECTR ENER, P1
[7]  
Palavalasa K.K., 2018, INT C COMM SIGN PROC
[8]  
Prabha R., INT J PHARM RES, V013
[9]  
Rahi M.M.I., 2019, IEEE AS PAC C COMP S
[10]   Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition [J].
Saeedi, Pouya ;
Petersohn, Inga ;
Salpea, Paraskevi ;
Malanda, Belma ;
Karuranga, Suvi ;
Unwin, Nigel ;
Colagiuri, Stephen ;
Guariguata, Leonor ;
Motala, Ayesha A. ;
Ogurtsova, Katherine ;
Shaw, Jonathan E. ;
Bright, Dominic ;
Williams, Rhys ;
Almutairi, Reem ;
Montoya, Pablo Aschner ;
Basit, Abdul ;
Besancon, Stephane ;
Bommer, Christian ;
Borgnakke, Wenche ;
Boyko, Edward ;
Chan, Juliana ;
Divakar, Hema ;
Esteghamati, Alireza ;
Forouhi, Nita ;
Franco, Laercio ;
Gregg, Edward ;
Hassanein, Mohamed ;
Ke, Calvin ;
Levitt, Dinky ;
Lim, Lee-Ling ;
Ogle, Graham D. ;
Owens, David ;
Pavkov, Meda ;
Pearson-Stuttard, Jonathan ;
Ramachandran, Ambady ;
Rathmann, Wolfgang ;
Riaz, Musarrat ;
Simmons, David ;
Sinclair, Alan ;
Sobngwi, Eugene ;
Thomas, Rebecca ;
Ward, Heather ;
Wild, Sarah ;
Yang, Xilin ;
Yuen, Lili ;
Zhang, Ping .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2019, 157