Estimation of Low-Density Lipoprotein Cholesterol Concentration Using Machine Learning

被引:12
作者
Cubukcu, Hikmet Can [1 ]
Topcu, Deniz Ilhan [2 ]
机构
[1] Ankara Univ, Interdisciplinary Stem Cells & Regenerat Med, Stem Cell Inst, Ankara, Turkey
[2] Baskent Univ, Dept Med Biochem, Fac Med, Ankara, Turkey
关键词
low-density lipoproteins; cholesterol; lipids; artificial intelligence; machine learning; lipoproteins; LDL-CHOLESTEROL; CLINICAL-CHEMISTRY; EQUATION;
D O I
10.1093/labmed/lmab065
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Objective Low-density lipoprotein cholesterol (LDL-C) can be estimated using the Friedewald and Martin-Hopkins formulas. We developed LDL-C prediction models using multiple machine learning methods and investigated the validity of the new models along with the former formulas. Methods Laboratory data (n = 59,415) on measured LDL-C, high-density lipoprotein cholesterol, triglycerides (TG), and total cholesterol were partitioned into training and test data sets. Linear regression, gradient-boosted trees, and artificial neural network (ANN) models were formed based on the training data. Paired-group comparisons were performed using a t-test and the Wilcoxon signed-rank test. We considered P values .2 to be statistically significant. Results For TG >= 177 mg/dL, the Friedewald formula underestimated and the Martin-Hopkins formula overestimated the LDL-C (P <.001), which was more significant for LDL-C <70 mg/dL. The linear regression, gradient-boosted trees, and ANN models outperformed the aforementioned formulas for TG >= 177 mg/dL and LDL-C <70 mg/dL based on a comparison with a homogeneous assay (P >.001 vs. P <.001) and classification accuracy. Conclusion Linear regression, gradient-boosted trees, and ANN models offer more accurate alternatives to the aforementioned formulas, especially for TG 177 to 399 mg/dL and LDL-C <70 mg/dL.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 28 条
[11]   Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM [J].
Langlois, Michel R. ;
Nordestgaard, Borge G. ;
Langsted, Anne ;
Chapman, M. John ;
Aakre, Kristin M. ;
Baum, Hannsjoerg ;
Boren, Jan ;
Bruckert, Eric ;
Catapano, Alberico ;
Cobbaert, Christa ;
Collinson, Paul ;
Descamps, Olivier S. ;
Duff, Christopher J. ;
von Eckardstein, Arnold ;
Hammerer-Lercher, Angelika ;
Kamstrup, Pia R. ;
Kolovou, Genovefa ;
Kronenberg, Florian ;
Mora, Samia ;
Pulkki, Kari ;
Remaley, Alan T. ;
Rifai, Nader ;
Ros, Emilio ;
Stankovic, Sanja ;
Stavljenic-Rukavina, Ana ;
Sypniewska, Grazyna ;
Watts, Gerald F. ;
Wiklund, Olov ;
Laitinen, Paivi .
CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2020, 58 (04) :496-517
[12]   Validation of the Martin Method for Estimating Low-Density Lipoprotein Cholesterol Levels in Korean Adults: Findings from the Korea National Health and Nutrition Examination Survey, 2009-2011 [J].
Lee, Jongseok ;
Jang, Sungok ;
Son, Heejeong .
PLOS ONE, 2016, 11 (01)
[13]   Deep neural network for estimating low density lipoprotein cholesterol [J].
Lee, Taesic ;
Kim, Juwon ;
Uh, Young ;
Lee, Hyunju .
CLINICA CHIMICA ACTA, 2019, 489 :35-40
[14]   Agreement Between Fasting and Postprandial LDL Cholesterol Measured with 3 Methods in Patients with Type 2 Diabetes Mellitus [J].
Lund, Soren S. ;
Petersen, Martin ;
Frandsen, Merete ;
Smidt, Ulla M. ;
Parving, Hans-Henrik ;
Vaag, Allan A. ;
Jensen, Tonny .
CLINICAL CHEMISTRY, 2011, 57 (02) :298-308
[15]   2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) [J].
Mach, Francois ;
Baigent, Colin ;
Catapano, Alberico L. ;
Koskinas, Konstantinos C. ;
Casula, Manuela ;
Badimon, Lina ;
Chapman, M. John ;
De Backer, Guy G. ;
Delgado, Victoria ;
Ference, Brian A. ;
Graham, Ian M. ;
Halliday, Alison ;
Landmesser, Ulf ;
Mihaylova, Borislava ;
Pedersen, Terje R. ;
Riccardi, Gabriele ;
Richter, Dimitrios J. ;
Sabatine, Marc S. ;
Taskinen, Marja-Riitta ;
Tokgozoglu, Lale ;
Wiklund, Olov ;
Mueller, Christian ;
Drexel, Heinz ;
Aboyans, Victor ;
Corsini, Alberto ;
Doehner, Wolfram ;
Farnier, Michel ;
Gigante, Bruna ;
Kayikcioglu, Meral ;
Krstacic, Goran ;
Lambrinou, Ekaterini ;
Lewis, Basil S. ;
Masip, Josep ;
Moulin, Philippe ;
Petersen, Steffen ;
Petronio, Anna Sonia ;
Piepoli, Massimo Francesco ;
Pinto, Xavier ;
Raber, Lorenz ;
Ray, Kausik K. ;
Reiner, Zeljko ;
Riesen, Walter F. ;
Roffi, Marco ;
Schmid, Jean-Paul ;
Shlyakhto, Evgeny ;
Simpson, Iain A. ;
Stroes, Erik ;
Sudano, Isabella ;
Tselepis, Alexandros D. ;
Viigimaa, Margus .
EUROPEAN HEART JOURNAL, 2020, 41 (01) :111-188
[16]   Comparison of a Novel Method vs the Friedewald Equation for Estimating Low-Density Lipoprotein Cholesterol Levels From the Standard Lipid Profile [J].
Martin, Seth S. ;
Blaha, Michael J. ;
Elshazly, Mohamed B. ;
Toth, Peter P. ;
Kwiterovich, Peter O. ;
Blumenthal, Roger S. ;
Jones, Steven R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 310 (19) :2061-2068
[17]   Interrater reliability: the kappa statistic [J].
McHugh, Mary L. .
BIOCHEMIA MEDICA, 2012, 22 (03) :276-282
[18]   Validation of a Proposed Novel Equation for Estimating LDL Cholesterol [J].
Meeusen, Jeffrey W. ;
Lueke, Alan J. ;
Jaffe, Allan S. ;
Saenger, Amy K. .
CLINICAL CHEMISTRY, 2014, 60 (12) :1519-1523
[19]   Seven Direct Methods for Measuring HDL and LDL Cholesterol Compared with Ultracentrifugation Reference Measurement Procedures [J].
Miller, W. Greg ;
Myers, Gary L. ;
Sakurabayashi, Ikunosuke ;
Bachmann, Lorin M. ;
Caudill, Samuel P. ;
Dziekonski, Andrzej ;
Edwards, Selvin ;
Kimberly, Mary M. ;
Korzun, William J. ;
Leary, Elizabeth T. ;
Nakajima, Katsuyuki ;
Nakamura, Masakazu ;
Nilsson, Goeran ;
Shamburek, Robert D. ;
Vetrovec, George W. ;
Warnick, G. Russell ;
Remaley, Alan T. .
CLINICAL CHEMISTRY, 2010, 56 (06) :977-986
[20]  
Nauck M, 2002, CLIN CHEM, V48, P236