Estimation of Low-Density Lipoprotein Cholesterol Concentration Using Machine Learning

被引:12
作者
Cubukcu, Hikmet Can [1 ]
Topcu, Deniz Ilhan [2 ]
机构
[1] Ankara Univ, Interdisciplinary Stem Cells & Regenerat Med, Stem Cell Inst, Ankara, Turkey
[2] Baskent Univ, Dept Med Biochem, Fac Med, Ankara, Turkey
关键词
low-density lipoproteins; cholesterol; lipids; artificial intelligence; machine learning; lipoproteins; LDL-CHOLESTEROL; CLINICAL-CHEMISTRY; EQUATION;
D O I
10.1093/labmed/lmab065
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
Objective Low-density lipoprotein cholesterol (LDL-C) can be estimated using the Friedewald and Martin-Hopkins formulas. We developed LDL-C prediction models using multiple machine learning methods and investigated the validity of the new models along with the former formulas. Methods Laboratory data (n = 59,415) on measured LDL-C, high-density lipoprotein cholesterol, triglycerides (TG), and total cholesterol were partitioned into training and test data sets. Linear regression, gradient-boosted trees, and artificial neural network (ANN) models were formed based on the training data. Paired-group comparisons were performed using a t-test and the Wilcoxon signed-rank test. We considered P values .2 to be statistically significant. Results For TG >= 177 mg/dL, the Friedewald formula underestimated and the Martin-Hopkins formula overestimated the LDL-C (P <.001), which was more significant for LDL-C <70 mg/dL. The linear regression, gradient-boosted trees, and ANN models outperformed the aforementioned formulas for TG >= 177 mg/dL and LDL-C <70 mg/dL based on a comparison with a homogeneous assay (P >.001 vs. P <.001) and classification accuracy. Conclusion Linear regression, gradient-boosted trees, and ANN models offer more accurate alternatives to the aforementioned formulas, especially for TG 177 to 399 mg/dL and LDL-C <70 mg/dL.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 28 条
[1]  
[Anonymous], KER COMP PROGR
[2]  
[Anonymous], 2010, R LANGUAGE ENV STAT
[3]   Is Machine Learning-derived Low-Density Lipoprotein Cholesterol estimation more reliable than standard closed form equations? Insights from a laboratory database by comparison with a direct homogeneous assay [J].
Barakett-Hamade, Vanda ;
Ghayad, Jean Pierre ;
Mchantaf, Gilbert ;
Sleilaty, Ghassan .
CLINICA CHIMICA ACTA, 2021, 519 :220-226
[4]   KNIME:: The Konstanz Information Miner [J].
Berthold, Michael R. ;
Cebron, Nicolas ;
Dill, Fabian ;
Gabriel, Thomas R. ;
Koetter, Tobias ;
Meinl, Thorsten ;
Ohl, Peter ;
Sieb, Christoph ;
Thiel, Kilian ;
Wiswedel, Bernd .
DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, :319-326
[5]   Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel [J].
Ference, Brian A. ;
Ginsberg, Henry N. ;
Graham, Ian ;
Ray, Kausik K. ;
Packard, Chris J. ;
Bruckert, Eric ;
Hegele, Robert A. ;
Krauss, Ronald M. ;
Raal, Frederick J. ;
Schunkert, Heribert ;
Watts, Gerald F. ;
Boren, Jan ;
Fazio, Sergio ;
Horton, Jay D. ;
Masana, Luis ;
Nicholls, Stephen J. ;
Nordestgaard, Borge G. ;
van de Sluis, Bart ;
Taskinen, Marja-Riitta ;
Tokgozoglu, Lale ;
Landmesser, Ulf ;
Laufs, Ulrich ;
Wiklund, Olov ;
Stock, Jane K. ;
Chapman, M. John ;
Catapano, Alberico L. .
EUROPEAN HEART JOURNAL, 2017, 38 (32) :2459-2472
[6]  
FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
[7]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232
[8]   2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines [J].
Grundy, Scott M. ;
Stone, Neil J. ;
Bailey, Alison L. ;
Beam, Craig ;
Birtcher, Kim K. ;
Blumenthal, Roger S. ;
Braun, Lynne T. ;
de Ferranti, Sarah ;
Faiella-Tommasino, Joseph ;
Forman, Daniel E. ;
Goldberg, Ronald ;
Heidenreich, Paul A. ;
Hlatky, Mark A. ;
Jones, Daniel W. ;
Lloyd-Jones, Donald ;
Lopez-Pajares, Nuria ;
Ndumele, Chiadi E. ;
Orringer, Carl E. ;
Peralta, Carmen A. ;
Saseen, Joseph J. ;
Smith, Sidney C., Jr. ;
Sperling, Laurence ;
Virani, Salim S. ;
Yeboah, Joseph .
CIRCULATION, 2019, 139 (25) :E1082-E1143
[9]   Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report [J].
Grundy, SM ;
Becker, D ;
Clark, LT ;
Cooper, RS ;
Denke, MA ;
Howard, WJ ;
Hunninghake, DB ;
Illingworth, R ;
Luepker, RV ;
McBride, P ;
McKenney, JM ;
Pasternak, RC ;
Stone, NJ ;
Van Horn, L ;
Brewer, HB ;
Cleeman, JI ;
Ernst, ND ;
Gordon, D ;
Levy, D ;
Rifkind, B ;
Rossouw, JE ;
Savage, P ;
Haffner, SM ;
Orloff, DG ;
Proschan, MA ;
Schwartz, JS ;
Sempos, CT ;
Shero, ST ;
Murray, EZ ;
Keller, SA ;
Jehle, AJ .
CIRCULATION, 2002, 106 (25) :3143-3421
[10]   Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method [J].
Krouwer, Jan S. .
STATISTICS IN MEDICINE, 2008, 27 (05) :778-780