Partial Holder continuity for discontinuous elliptic problems with VMO-coefficients

被引:43
作者
Boegelein, Verena [1 ]
Duzaar, Frank [2 ]
Habermann, Jens [1 ]
Scheven, Christoph [2 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
PARTIAL REGULARITY; VARIATIONAL INTEGRALS; BOUNDARY-REGULARITY; OPTIMAL INTERIOR; SYSTEMS; MINIMIZERS; FUNCTIONALS; ORDER;
D O I
10.1112/plms/pdr009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish partial Holder continuity for vector-valued solutions u : Omega -> R-N to elliptic systems of the type div a(x, u, Du) = 0 in Omega, as well as for minimizers u : Omega -> R-N of quasi-convex functionals F[u] := integral(Omega) f(x, u, Du) dx, where the structure function a, respectively, the integrand f is possibly discontinuous with respect to x. More precisely, we merely impose a uniform VMO-condition with respect to the x-dependence and continuity with respect to the u-dependence and prove Holder continuity of the solutions, respectively, the minimizers outside of a negligible set.
引用
收藏
页码:371 / 404
页数:34
相关论文
共 22 条
[11]   Parabolic Systems with Polynomial Growth and Regularity [J].
Duzaar, Frank ;
Mingione, Giuseppe ;
Steffen, Klaus .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 214 (1005) :IX-+
[12]   Partial continuity for elliptic problems [J].
Foss, Mikil ;
Mingione, Giuseppe .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :471-503
[13]   C-1,ALPHA PARTIAL REGULARITY OF FUNCTIONS MINIMIZING QUASICONVEX INTEGRALS [J].
FUSCO, N ;
HUTCHINSON, J .
MANUSCRIPTA MATHEMATICA, 1985, 54 (1-2) :121-143
[14]   Partial regularity for degenerate subelliptic systems associated with Hormander's vector fields [J].
Gao, Dan ;
Niu, Pengcheng ;
Wang, Jialin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) :3209-3223
[15]   PARTIAL REGULARITY OF MINIMIZERS OF QUASI-CONVEX INTEGRALS [J].
GIAQUINTA, M ;
MODICA, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (03) :185-208
[16]   ALMOST-EVERYWHERE REGULARITY RESULTS FOR SOLUTIONS OF NON-LINEAR ELLIPTIC SYSTEMS [J].
GIAQUINTA, M ;
MODICA, G .
MANUSCRIPTA MATHEMATICA, 1979, 28 (1-3) :109-158
[17]  
GIUSTI E, 1968, ARCH RATION MECH AN, V31, P173
[18]   REGULARITY FOR SOLUTIONS OF ELLIPTIC SYSTEMS OF QUASILINEAR DIFFERENTIAL-EQUATIONS OF 2ND ORDER [J].
IVERT, PA .
MANUSCRIPTA MATHEMATICA, 1979, 30 (01) :53-88
[19]   The singular set of minima of integral functionals [J].
Kristensen, J ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (03) :331-398
[20]   Partial regularity results for minimizers of quasiconvex functionals of higher order [J].
Kronz, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (01) :81-112