Partial Holder continuity for discontinuous elliptic problems with VMO-coefficients

被引:43
作者
Boegelein, Verena [1 ]
Duzaar, Frank [2 ]
Habermann, Jens [1 ]
Scheven, Christoph [2 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
[2] Univ Erlangen Nurnberg, Dept Math, D-91054 Erlangen, Germany
关键词
PARTIAL REGULARITY; VARIATIONAL INTEGRALS; BOUNDARY-REGULARITY; OPTIMAL INTERIOR; SYSTEMS; MINIMIZERS; FUNCTIONALS; ORDER;
D O I
10.1112/plms/pdr009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish partial Holder continuity for vector-valued solutions u : Omega -> R-N to elliptic systems of the type div a(x, u, Du) = 0 in Omega, as well as for minimizers u : Omega -> R-N of quasi-convex functionals F[u] := integral(Omega) f(x, u, Du) dx, where the structure function a, respectively, the integrand f is possibly discontinuous with respect to x. More precisely, we merely impose a uniform VMO-condition with respect to the x-dependence and continuity with respect to the u-dependence and prove Holder continuity of the solutions, respectively, the minimizers outside of a negligible set.
引用
收藏
页码:371 / 404
页数:34
相关论文
共 22 条
[1]  
[Anonymous], ANN MATH STUDIES
[2]  
[Anonymous], 2003, DIRECT METHODS CALCU, DOI DOI 10.1142/5002
[3]  
[Anonymous], PARTIAL HOLDER CONTI
[4]  
Beck L, 2009, J CONVEX ANAL, V16, P287
[5]   Regularity in parabolic systems with continuous coefficients [J].
Boegelein, V. ;
Foss, M. ;
Mingione, G. .
MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) :903-938
[6]   The regularity of general parabolic systems with degenerate diffusion [J].
Boegelein, Verena ;
Duzaar, Frank ;
Mingione, Giuseppe .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 221 (1041) :1-143
[7]   HOLDER CONTINUITY OF THE SOLUTIONS OF SOME NON-LINEAR ELLIPTIC-SYSTEMS [J].
CAMPANATO, S .
ADVANCES IN MATHEMATICS, 1983, 48 (01) :16-43
[8]   Nonlinear elliptic systems with Dini continuous coefficients [J].
Duzaar, F ;
Gastel, A .
ARCHIV DER MATHEMATIK, 2002, 78 (01) :58-73
[9]  
Duzaar F, 2002, J REINE ANGEW MATH, V546, P73
[10]   Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation [J].
Duzaar, F ;
Grotowski, JF .
MANUSCRIPTA MATHEMATICA, 2000, 103 (03) :267-298