On the Gibbs phase rule in the Pirogov-Sinai regime

被引:9
|
作者
Bovier, A
Merola, I
Presutti, E
Zahradník, M
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[3] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, CR-18600 Prague, Czech Republic
关键词
Pirogov-Sinai; Gibbs phase rule; contours; Peierls estimates; phase transitions;
D O I
10.1023/B:JOSS.0000013970.66907.b9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider extended Pirogov - Sinai models including lattice and continuum particle systems with Kac potentials. Call lambda an intensive variable conjugate to an extensive quantity alpha appearing in the Hamiltonian via the additive term - lambdaalpha. We suppose that a Pirogov - Sinai phase transition with order parameter alpha occurs at lambda = 0, and that there are two distinct classes of DLR measures, the plus and the minus DLR measures, with the expectation of a respectively positive and negative in the two classes. We then prove that lambda = 0 is the only point in an interval I of values of lambda centered at 0 where this occurs, namely the expected value of alpha is positive, respectively negative, in all translational invariant DLR measures at {lambda > 0} I and {lambda < 0} I.
引用
收藏
页码:1235 / 1267
页数:33
相关论文
共 50 条
  • [1] On the Gibbs Phase Rule in the Pirogov–Sinai Regime
    A. Bovier
    I. Merola
    E. Presutti
    M. Zahradník
    Journal of Statistical Physics, 2004, 114 : 1235 - 1267
  • [2] On the uniqueness of Gibbs states in the Pirogov-Sinai theory
    Lebowitz, JL
    Mazel, AE
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (02) : 311 - 321
  • [3] On the uniqueness of Gibbs states in the Pirogov-Sinai theory
    Kerimov, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (15): : 2137 - 2146
  • [4] On the Uniqueness of Gibbs States¶in the Pirogov-Sinai Theory
    J.L. Lebowitz
    A.E. Mazel
    Communications in Mathematical Physics, 1997, 189 : 311 - 321
  • [5] Algorithmic Pirogov-Sinai Theory
    Helmuth, Tyler
    Perkins, Will
    Regts, Guus
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 1009 - 1020
  • [6] Algorithmic Pirogov-Sinai theory
    Helmuth, Tyler
    Perkins, Will
    Regts, Guus
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) : 851 - 895
  • [7] The Pirogov-Sinai Theory for Infinite Interactions
    Mazel, A.
    Stuhl, I.
    Suhov, Y.
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (12)
  • [8] AN ALTERNATE VERSION OF PIROGOV-SINAI THEORY
    ZAHRADNIK, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 93 (04) : 559 - 581
  • [9] EXTENSION OF PIROGOV-SINAI THEORY OF PHASE-TRANSITIONS TO CONTINUUM SYSTEM
    BRICMONT, J
    KURODA, K
    LEBOWITZ, JL
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 21 (01) : 28 - 28
  • [10] EXTENSION OF THE PIROGOV-SINAI THEORY TO A CLASS OF QUASIPERIODIC INTERACTIONS
    KOUKIOU, F
    PETRITIS, D
    ZAHRADNIK, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (03) : 365 - 383