Charge Transport Mechanism in a PECVD Deposited Low-k SiOCH Dielectric

被引:3
作者
Perevalov, T., V [1 ]
Gismatulin, A. A. [1 ]
Gritsenko, V. A. [1 ,2 ]
Xu, H. [3 ,4 ]
Zhang, J. [4 ]
Vorotilov, K. A. [5 ]
Baklanov, M. R. [4 ,5 ]
机构
[1] Rzhanov Inst Semicond Phys SB RAS, 13 Lavrentiev Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Tech Univ, 20 Marks Ave, Novosibirsk 630073, Russia
[3] China United Network Commun Co Ltd, 9 Iuomashi St, Beijing 100052, Peoples R China
[4] North China Univ Technol, 5 Jinyuanzhuang Rd, Beijing 100144, Peoples R China
[5] Russian Technol Univ, MIREA, 78 Vernadsky Ave, Moscow 119454, Russia
基金
俄罗斯基础研究基金会;
关键词
Low-k dielectric; charge transport; trap energy; photoluminescence; SILICON; CONDUCTION; DEFECTS;
D O I
10.1007/s11664-021-09411-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the most important issues during the selection of low-k dielectrics is related to their intrinsic properties including their electric breakdown and leakage current that are predominantly determined by conduction mechanisms. This study is devoted to elucidating the charge transport mechanism in the SiOCH low-k dielectric films fabricated by plasma-enhanced chemical vapor deposition. By analyzing four bulk-limited models of the charge transport it was found that only the Nasyrov-Gritsenko model of phonon-assisted electron tunneling between neutral traps describes the experimental I-V-T characteristics with all the fitting parameters with reasonable physical values. The obtained thermal trap energy value 1.2 eV is confirmed independently by photoluminescence spectroscopy data analysis. The trap nature and comparison of the obtained results with the corresponding data for low-k films with similar chemical composition and deposited by the spin-on-glass technology using self-assembling chemistry is discussed. It is hypothesized that the defect with ionization energy of 1.2 eV is the oxygen divacancy.
引用
收藏
页码:2521 / 2527
页数:7
相关论文
共 40 条
[1]   ELECTRONIC CONDUCTION THROUGH EVAPORATED SILICON OXIDE FILMS [J].
ADACHI, H ;
SHIBATA, Y ;
ONO, S .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1971, 4 (07) :988-&
[2]  
Adelmann C., 2020, ECS M, P1293
[3]   Photocurrent spectroscopy of low-k dielectric materials:: Barrier heights and trap densities [J].
Atkin, J. M. ;
Song, D. ;
Shaw, T. M. ;
Cartier, E. ;
Laibowitz, R. B. ;
Heinz, T. F. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)
[4]   Charge trapping at the low-k dielectric-silicon interface probed by the conductance and capacitance techniques [J].
Atkin, J. M. ;
Cartier, E. ;
Shaw, T. M. ;
Laibowitz, R. B. ;
Heinz, T. F. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[5]   Silicon dioxide modification by an electron beam [J].
Bakaleinikov, LA ;
Zamoryanskaya, MV ;
Kolesnikova, EV ;
Sokolov, VI ;
Flegontova, EY .
PHYSICS OF THE SOLID STATE, 2004, 46 (06) :1018-1023
[6]   Effect of porogen residue on electrical characteristics of ultra low-k materials [J].
Baklanov, Mikhail R. ;
Zhao, Larry ;
Van Besien, Els ;
Pantouvaki, Marianna .
MICROELECTRONIC ENGINEERING, 2011, 88 (06) :990-993
[7]   Conduction and material transport phenomena of degradation in electrically stressed ultra low-k dielectric before breakdown [J].
Breuer, T. ;
Kerst, U. ;
Boit, C. ;
Langer, E. ;
Ruelke, H. ;
Fissel, A. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (12)
[8]  
Frenkel J, 1938, PHYS REV, V54, P647, DOI 10.1103/PhysRev.54.647
[9]  
Frenkel J., 1938, TECH PHYS USSR, V5, P685
[10]   Charge transport mechanism in periodic mesoporous organosilica low-k dielectric [J].
Gismatulin, A. A. ;
Gritsenko, V. A. ;
Seregin, D. S. ;
Vorotilov, K. A. ;
Baklanov, M. R. .
APPLIED PHYSICS LETTERS, 2019, 115 (08)