Stable regular critical points of the Mumford-Shah functional are local minimizers

被引:9
作者
Bonacini, M. [1 ]
Morini, M. [2 ]
机构
[1] SISSA, I-34136 Trieste, Italy
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2015年 / 32卷 / 03期
关键词
Mumford-Shah functional; Free discontinuity problems; Second variation; EXISTENCE THEOREM; CALIBRATIONS; MINIMALITY;
D O I
10.1016/j.anihpc.2014.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper it is shown that any regular critical point of the Mumford Shah functional, with positive definite second variation, is an isolated local minimizer with respect to competitors which are sufficiently close in the L-1-topology. A global minimality result in small tubular neighborhoods of the discontinuity set is also established. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:533 / 570
页数:38
相关论文
共 25 条
[1]   Minimality via Second Variation for a Nonlocal Isoperimetric Problem [J].
Acerbi, E. ;
Fusco, N. ;
Morini, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 322 (02) :515-557
[2]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[3]  
[Anonymous], 2001, Adv. Nonlinear Stud.
[4]  
[Anonymous], 1983, P CTR MATH ANAL
[5]  
[Anonymous], P IEEE C COMP VIS PA
[6]  
Babadjian J.-F., 2014, ANN SC NO S IN PRESS
[7]  
Bonacini M., THESIS
[8]  
Braides A., 1998, Lecture Notes in Mathematics, V1694
[9]   A second order minimality condition for the Mumford-Shah functional [J].
Cagnetti, F. ;
Mora, M. G. ;
Morini, M. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (01) :37-74
[10]   EXISTENCE THEOREM FOR A DIRICHLET PROBLEM WITH FREE DISCONTINUITY SET [J].
CARRIERO, M ;
LEACI, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (07) :661-677