On a Dirichlet problem for one improperly elliptic equation

被引:0
作者
Babayan, A. H. [1 ]
机构
[1] Natl Polytech Univ Armenia, Yerevan, Armenia
关键词
Dirichlet problem; correct boundary value problem; defect numbers; improperly elliptic equation; PLANE;
D O I
10.1080/17476933.2018.1536703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dirichlet problem for sixth-order improperly elliptic equation is considered. The functional class of boundary functions, where this problem is normally solvable is determined. If the roots of the characteristic equation satisfy some conditions, the number of linearly independent solutions of the homogeneous problem and the number of linearly independent solvability conditions of the inhomogeneous problem are determined. Solutions of the homogeneous problem and solvability conditions of the inhomogeneous problem are obtained in explicit form.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 22 条
[1]  
[Anonymous], T MOSK MAT OBSHCH
[2]  
[Anonymous], 1968, TRAVAUX RECHERCHES M
[3]  
Axler S., 2001, Harmonic Function Theory
[4]  
Babayan A.H., 2007, Neklassicheskije Uravnenija Matematicheskoj Fziki, P56
[5]  
Babayan AO, 2015, MATH MONTISNIGRI, V32, P66
[6]  
Babayan A. O., 2003, IZV NATS AKAD NAUK A, V38, P39
[7]  
BABAYAN AH, 2017, DOKL NAT AKAD NAUK A, V117, P192
[8]  
Bari N.K., 1961, TRIGONOMETRIC SERIES
[9]  
Begehr H, 2005, Analysis (Munich), V1, P55
[10]  
Bitsadze A. V., 1966, Boundary Value Problems for Second Order Elliptic Equations