Optimal Locally Repairable Codes for Parallel Reading

被引:1
作者
Hao, Jie [1 ]
Shum, Kenneth W. [2 ]
Xia, Shu-Tao [3 ]
Li, Deyin [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Informat Secur Ctr, Beijing 100876, Peoples R China
[2] Chinese Univ Hong Kong Shenzhen, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Locally repairable codes; erasure codes; Singleton-like bound; optimal LRCs; CONSTRUCTIONS;
D O I
10.1109/ACCESS.2020.2992188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Locally repairable codes (LRCs) have important applications in distributed storage systems. In this paper, we study q-ary [n; k; d] LRCs with (r; t; delta)-information-locality, where each of the i-th (1 <= i <= k) information symbol is contained in t punctured subcodes with length <= r + delta - 1, minimum distance delta, and the i-th information symbol is the unique common code symbol of these t subcodes, furthermore, each subcode contains exactly delta - 1 parity symbols. Firstly, an upper bound on the minimum distance of such q-ary LRCs with (r; t; delta)-information-locality is given. Then, we propose a general construction framework of q-ary optimal LRCs with (r; t; delta)-information-locality and minimum distance d D t(delta - 1) + 1 where the required field size is just q >= r + delta-2 The proposed optimal LRCs can always repair a failed information node locally in case of at most t delta - 1 node failures. Moreover, multiple repair subcodes can support parallel readings of data, thus make the proposed codes attractive for distributed storage systems with hot data.
引用
收藏
页码:80447 / 80453
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2015, ARXIV150604822
[2]   On Optimal Locally Repairable Codes With Multiple Disjoint Repair Sets [J].
Cai, Han ;
Miao, Ying ;
Schwartz, Moshe ;
Tang, Xiaohu .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (04) :2402-2416
[3]   Constructions of Optimal (r, δ) Locally Repairable Codes via Constacyclic Codes [J].
Chen, Bin ;
Fang, Weijun ;
Xia, Shu-Tao ;
Fu, Fang-Wei .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2019, 67 (08) :5253-5263
[4]   Constructions of Optimal Cyclic (r, δ) Locally Repairable Codes [J].
Chen, Bin ;
Xia, Shu-Tao ;
Hao, Jie ;
Fu, Fang-Wei .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) :2499-2511
[5]   A Hybrid Task Scheduling Scheme for Heterogeneous Vehicular Edge Systems [J].
Chen, Xiao ;
Thomas, Nigel ;
Zhan, Tianming ;
Ding, Jie .
IEEE ACCESS, 2019, 7 :117088-117099
[6]  
Colbourn C. J., 2006, Handbook of Combinatorial Designs, Discrete Mathematics and Its Applications, Vsecond edn.
[7]   Constructions and Properties of Linear Locally Repairable Codes [J].
Ernvall, Toni ;
Westerback, Thomas ;
Freij-Hollanti, Ragnar ;
Hollanti, Camilla .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) :1129-1143
[8]   Solubility and thermodynamic properties of N-acetylglucosamine in mono-solvents and binary solvents at different temperatures [J].
Fang, Wenjie ;
Chen, Kui ;
Ji, Lijun ;
Zhu, Jiawen ;
Wu, Bin ;
Wu, Yanyang .
PHYSICS AND CHEMISTRY OF LIQUIDS, 2019, 57 (05) :587-599
[9]   Quasi-cyclic low-density parity-check codes from circulant permutation matrices [J].
Fossorier, MPC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1788-1793
[10]   On the Locality of Codeword Symbols [J].
Gopalan, Parikshit ;
Huang, Cheng ;
Simitci, Huseyin ;
Yekhanin, Sergey .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (11) :6925-6934