On regularity criteria for the 3D Navier-Stokes equations involving the ratio of the vorticity and the velocity

被引:3
作者
Zhang, Zujin [1 ]
Zhou, Yong [2 ,3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Math, Shanghai 200433, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Regularity criteria; Navier-Stokes equations; Vorticity; PRESSURE;
D O I
10.1016/j.camwa.2016.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This note concerns regularity criteria for the Navier-Stokes equations. It is proved that if the solution satisfies integral(T)(0) parallel to omega(tau)parallel to(2s/2s-3)(Ls)/parallel to u(tau)parallel to(f(s))(L3) d tau < infinity for 3/2 < s < infinity and suitable function f(s), then the solution is regular on (0, T). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2311 / 2314
页数:4
相关论文
共 10 条
[1]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[2]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[3]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI DOI 10.1002/MANA.3210040121
[5]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[6]  
Prodi G., 1959, Annali di Matematica Pura ed Applicata, V48, P173, DOI 10.1007/BF02410664
[7]  
SERRIN J, 1962, ARCH RATION MECH AN, V9, P187
[8]  
Tran C.V., PRESSURE MODER UNPUB
[9]   Depletion of nonlinearity in the pressure force driving Navier-Stokes flows [J].
Tran, Chuong V. ;
Yu, Xinwei .
NONLINEARITY, 2015, 28 (05) :1295-1306
[10]   On regularity criteria in terms of pressure for the Navier-Stokes equations in R3 [J].
Zhou, Y .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :149-156