Tensile actuation response of additively manufactured nickel-titanium shape memory alloys

被引:85
作者
Sam, J. [1 ]
Franco, B. [1 ]
Ma, J. [1 ]
Karaman, I. [1 ]
Elwany, A. [2 ]
Mabe, J. H. [3 ]
机构
[1] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Ind & Syst Engn, College Stn, TX 77843 USA
[3] Boeing Co, St Louis, MO USA
基金
美国国家科学基金会;
关键词
Additive manufacturing; Shape memory alloys; NiTi; Selective laser melting; Actuation; NITI; BULK;
D O I
10.1016/j.scriptamat.2017.11.013
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present work, we characterize the tensile shape memory actuation behavior of NiTi shape memory alloys (SMAs) fabricated using laser powder bed fusion (L-PBF) additive manufacturing process. The samples were fabricated using two different sets of processing parameters. While reversible tensile shape memory behavior was observed in both cases, the samples fabricated with a shorter hatch spacing exhibited higher transformation temperatures, lower actuation strain, and lower irrecoverable strain compared to the samples fabricated with wider hatch spacing. The actuation strain and ductility of the L-PBF samples were lower than that of the conventionally manufactured NiTi SMA samples. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:164 / 168
页数:5
相关论文
共 22 条
[11]  
Haberland C., 2013, P ASME C SMART MAT A, V1
[12]   On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing [J].
Haberland, Christoph ;
Elahinia, Mohammad ;
Walker, Jason M. ;
Meier, Horst ;
Frenzel, Jan .
SMART MATERIALS AND STRUCTURES, 2014, 23 (10)
[13]   The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting [J].
Habijan, T. ;
Haberland, C. ;
Meier, H. ;
Frenzel, J. ;
Wittsiepe, J. ;
Wuwer, C. ;
Greulich, C. ;
Schildhauer, T. A. ;
Koeller, M. .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (01) :419-426
[14]   Review of the Machining Difficulties of Nickel-Titanium Based Shape Memory Alloys [J].
Hassan, M. R. ;
Mehrpouya, M. ;
Dawood, S. .
ADVANCES IN MECHANICAL AND MANUFACTURING ENGINEERING, 2014, 564 :533-537
[15]   A review of shape memory alloy research, applications and opportunities [J].
Jani, Jaronie Mohd ;
Leary, Martin ;
Subic, Aleksandar ;
Gibson, Mark A. .
MATERIALS & DESIGN, 2014, 56 :1078-1113
[16]   Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy [J].
Kockar, B. ;
Karaman, I. ;
Kim, J. I. ;
Chumlyakov, Y. J. ;
Sharp, J. ;
Yu, C. -J. .
ACTA MATERIALIA, 2008, 56 (14) :3630-3646
[17]   Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy [J].
Kockar, B. ;
Karaman, I. ;
Kulkarni, A. ;
Chumlyakov, Y. ;
Kireeva, I. V. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 361 (2-3) :298-305
[18]   Spatial Control of Functional Response in 4D-Printed Active Metallic Structures [J].
Ma, Ji ;
Franco, Brian ;
Tapia, Gustavo ;
Karayagiz, Kubra ;
Johnson, Luke ;
Liu, Jun ;
Arroyave, Raymundo ;
Karaman, Ibrahim ;
Elwany, Alaa .
SCIENTIFIC REPORTS, 2017, 7
[19]   Recent developments in the research of shape memory alloys [J].
Otsuka, K ;
Ren, XB .
INTERMETALLICS, 1999, 7 (05) :511-528
[20]   Physical metallurgy of Ti-Ni-based shape memory alloys [J].
Otsuka, K ;
Ren, X .
PROGRESS IN MATERIALS SCIENCE, 2005, 50 (05) :511-678