Quenching and propagation in KPP reaction-diffusion equations with a heat loss

被引:41
作者
Berestycki, H
Hamel, F
Kiselev, A
Ryzhik, L
机构
[1] EHESS, CAMS, F-75006 Paris, France
[2] Univ Aix Marseille 3, LATP, Fac St Jerome, F-13397 Marseille, France
[3] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[4] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会; 英国科研创新办公室;
关键词
D O I
10.1007/s00205-005-0367-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a reaction-diffusion system of KPP type in a shear flow and with a non-zero heat-loss parameter. We establish criteria for the flame blow-off and propagation, and identify the propagation speed in terms of the exponential decay of the initial data. We prove the existence of travelling fronts for all speeds c > max(0, c*) in the case Le = 1, where c* is an element of R. This seems to be one of the first non-perturbative results on the existence of fronts for the thermo-diffusive system in higher dimensions.
引用
收藏
页码:57 / 80
页数:24
相关论文
共 31 条
[1]   Front speed enhancement in cellular flows [J].
Abel, M ;
Cencini, M ;
Vergni, D ;
Vulpiani, A .
CHAOS, 2002, 12 (02) :481-488
[2]  
ABEL M, 2001, PHYS REV E, V64
[3]   Reaction diffusion in fast steady flow [J].
Audoly, B ;
Berestycki, H ;
Pomeau, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (03) :255-262
[4]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[5]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[6]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[7]  
BERESTYCKI H, UNPUB ELLIPTIC SYSTE
[8]  
BERESTYCKI H, 2003, NATO SCI SERIES C, V569
[9]   THE DEVELOPMENT OF TRAVELING WAVES IN QUADRATIC AND CUBIC AUTOCATALYSIS WITH UNEQUAL DIFFUSION RATES .1. PERMANENT FORM TRAVELING WAVES [J].
BILLINGHAM, J ;
NEEDHAM, DJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 334 (1633) :1-24
[10]   Bulk burning rate in passive-reactive diffusion [J].
Constantin, P ;
Kiselev, A ;
Oberman, A ;
Ryzhik, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (01) :53-91