A note on the nonlinear Schrodinger equation in weak Lp spaces

被引:36
作者
Cazenave, T
Vega, L
Vilela, MC
机构
[1] Univ Paris 06, UMR 7598, CNRS, F-75252 Paris 05, France
[2] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
[3] Univ Alfonso X, Dept Matemat, Madrid 28691, Spain
关键词
D O I
10.1142/S0219199701000317
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the global Cauchy problem for the equation iu(t) + Deltau + lambda /u/(alpha)u = 0 in R-N Using generalized Strichartz' inequalities we show that, under some restrictions on alpha, if the initial value is sufficiently small in some weak L-p space then there exists a global solution. This result provides a common framework to the " classical " H-s solutions and to the self-similar solutions, thereby extending previous results by Planchon.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 16 条
[1]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[2]   Asymptotically self-similar global solutions of the nonlinear Schrodinger and heat equations [J].
Cazenave, T ;
Weissler, FB .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (01) :83-120
[3]   Scattering theory and self-similar solutions for the nonlinear Schrodinger equation [J].
Cazenave, T ;
Weissler, FB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) :625-650
[4]   More self-similar solutions of the nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Weissler, Fred B. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03) :355-365
[5]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+
[6]   On nonlinear Schrodinger equations .2. H-S-solutions and unconditional well-posedness [J].
Kato, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1995, 67 :281-306
[7]  
KENIG C, IN PRESS DUKE MATH J
[8]   CONVOLUTION OPERATORS AND (P, Q) SPACES [J].
ONEIL, R .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (01) :129-&
[9]  
Pecher H, 1997, ANN I H POINCARE-PHY, V67, P259
[10]   On the cauchy problem in Besov spaces for a non-linear Schrodinger equation [J].
Planchon, F .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (02) :243-254