Dynamics in a discrete time model of logistic type

被引:2
作者
Yu, Zhiheng [1 ]
Zhong, Jiyu [2 ]
Zeng, Yingying [3 ,4 ]
Li, Song [5 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Peoples R China
[2] Lingnan Normal Univ, Sch Math & Stat, Zhanjiang, Peoples R China
[3] Sichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China
[4] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu, Peoples R China
[5] NYU, Courant Inst Math Sci, Dept Math, New York, NY USA
基金
美国国家科学基金会;
关键词
Polynomial symbolic algebraic theory; bifurcation; invariant cycle; Marotto's chaos; PREDATOR-PREY SYSTEM; OSCILLATIONS; BIFURCATION; CHAOS; INTERVAL; MAP;
D O I
10.1080/10236198.2022.2102909
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the qualitative properties and bifurcations of a discrete-time logistic type model for the competitive interaction of two species. Applying polynomial symbolic algebraic theory to deal with complex high-order semi-algebraic systems, and using the bifurcation theory, we give not only the topological structure of the orbits near each fixed point but also the parameter conditions such that the model produces transcritical bifurcation, supercritical (or subcritical) flip bifurcation and supercritical (or subcritical) Neimark-Sacker bifurcation, respectively. Besides, the corresponding mapping is proven to be chaotic in the sense of Marotto. At last, we simulate the stable orbits of period 2 produced from the supercritical flip bifurcation, the stable invariant circle resulting from the Neimark-Sacker bifurcation and the chaos in the sense of Marotto to verify our results.
引用
收藏
页码:869 / 899
页数:31
相关论文
共 39 条
[1]  
Akritas A.G., 2005, NONLINEAR ANAL-MODEL, V10, P297
[2]  
Akritas AG, 2010, B MATH SOC SCI MATH, V53, P201
[3]   Dynamics of two coupled Chua's circuits [J].
Anishchenko, VC ;
Vadivasova, TE ;
Astakhov, VV ;
Sosnovtseva, OV ;
Wu, CW ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (06) :1677-1699
[4]  
[Anonymous], 1980, Iterated maps on the interval as dynamical systems
[5]  
[Anonymous], 1964, 333 IMMNYU
[6]  
Carr J., 1981, Applications of center manifold theory springer-verlag: Newyork, V35, DOI [10.1007/978-1-4612-5929-9, DOI 10.1007/978-1-4612-5929-9]
[7]   Dynamics in a discrete-time predator-prey system with Allee effect [J].
Chen, Xian-wei ;
Fu, Xiang-ling ;
Jing, Zhu-jun .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (01) :143-164
[8]   Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect [J].
Cheng, Lifang ;
Cao, Hongjun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 38 :288-302
[9]  
Farkas M., 2001, Dynamical Models in Biology
[10]  
Guckenheimer J., 1983, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/BFB0095239