Asymptotic expansions and approximations for the Caputo derivative

被引:5
作者
Dimitrov, Yuri [1 ]
Miryanov, Radan [2 ]
Todorov, Venelin [3 ,4 ]
机构
[1] Univ Forestry, Dept Math & Phys, Sofia 1756, Bulgaria
[2] Univ Econ, Dept Stat & Appl Math, Varna 9002, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, BU-1113 Sofia, Bulgaria
[4] Bulgarian Acad Sci, Inst Informat & Commun Technol, Acad G Bonchev Str,Bl 25A, BU-1113 Sofia, Bulgaria
关键词
Binomial coefficient; Asymptotic expansion; Approximation of the Caputo derivative; Numerical solution; FRACTIONAL DIFFUSION EQUATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; CALCULUS; SCHEME;
D O I
10.1007/s40314-018-0641-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the asymptotic expansions of the binomial coefficients and the weights of the L1 approximation to obtain approximations of order and second-order approximations of the Caputo derivative by modifying the weights of the shifted Grunwald-Letnikov difference approximation and the L1 approximation of the Caputo derivative. A modification of the shifted Grunwald-Letnikov approximation is obtained which allows second-order numerical solutions of fractional differential equations with arbitrary values of the solutions and their first derivatives at the initial point.
引用
收藏
页码:5476 / 5499
页数:24
相关论文
共 35 条
  • [1] A new difference scheme for the time fractional diffusion equation
    Alikhanov, Anatoly A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 : 424 - 438
  • [2] New Operational Matrices for Solving Fractional Differential Equations on the Half-Line
    Bhrawy, Ali H.
    Taha, Taha M.
    Alzahrani, Ebrahim O.
    Baleanu, Dumitru
    Alzahrani, Abdulrahim A.
    [J]. PLOS ONE, 2015, 10 (05):
  • [3] FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS
    Chen, Minghua
    Deng, Weihua
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) : 1418 - 1438
  • [4] ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF LINEAR MULTI-ORDER FRACTIONAL DIFFERENTIAL SYSTEMS
    Diethelm, Kai
    Siegmund, Stefan
    Tuan, H. T.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) : 1165 - 1195
  • [5] Dimitrov Dim14 Yuri, 2014, J. Fract. Calc. Appl., V5
  • [6] Dimitrov Y., 2018, J. Fract. Calc. Appl, V9, P35, DOI [https://doi.org/10.48550/arXiv.1605.06912, DOI 10.48550/ARXIV.1605.06912]
  • [7] Dimitrov Y., 2017, EC COMPUT SCI, V4, P23
  • [8] Dimitrov Y., 2016, J FRACT CALC APPL, V7, P175
  • [9] High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions
    Ding, Hengfei
    Li, Changpin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (02) : 759 - 784
  • [10] HIGH-ORDER ALGORITHMS FOR RIESZ DERIVATIVE AND THEIR APPLICATIONS (III)
    Ding, Hengfei
    Li, Changpin
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) : 19 - 55