Asymptotic expansions and approximations for the Caputo derivative

被引:5
作者
Dimitrov, Yuri [1 ]
Miryanov, Radan [2 ]
Todorov, Venelin [3 ,4 ]
机构
[1] Univ Forestry, Dept Math & Phys, Sofia 1756, Bulgaria
[2] Univ Econ, Dept Stat & Appl Math, Varna 9002, Bulgaria
[3] Bulgarian Acad Sci, Inst Math & Informat, Acad G Bonchev Str,Bl 8, BU-1113 Sofia, Bulgaria
[4] Bulgarian Acad Sci, Inst Informat & Commun Technol, Acad G Bonchev Str,Bl 25A, BU-1113 Sofia, Bulgaria
关键词
Binomial coefficient; Asymptotic expansion; Approximation of the Caputo derivative; Numerical solution; FRACTIONAL DIFFUSION EQUATION; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; CALCULUS; SCHEME;
D O I
10.1007/s40314-018-0641-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the asymptotic expansions of the binomial coefficients and the weights of the L1 approximation to obtain approximations of order and second-order approximations of the Caputo derivative by modifying the weights of the shifted Grunwald-Letnikov difference approximation and the L1 approximation of the Caputo derivative. A modification of the shifted Grunwald-Letnikov approximation is obtained which allows second-order numerical solutions of fractional differential equations with arbitrary values of the solutions and their first derivatives at the initial point.
引用
收藏
页码:5476 / 5499
页数:24
相关论文
共 35 条
[1]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[2]   New Operational Matrices for Solving Fractional Differential Equations on the Half-Line [J].
Bhrawy, Ali H. ;
Taha, Taha M. ;
Alzahrani, Ebrahim O. ;
Baleanu, Dumitru ;
Alzahrani, Abdulrahim A. .
PLOS ONE, 2015, 10 (05)
[3]   FOURTH ORDER ACCURATE SCHEME FOR THE SPACE FRACTIONAL DIFFUSION EQUATIONS [J].
Chen, Minghua ;
Deng, Weihua .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (03) :1418-1438
[4]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF LINEAR MULTI-ORDER FRACTIONAL DIFFERENTIAL SYSTEMS [J].
Diethelm, Kai ;
Siegmund, Stefan ;
Tuan, H. T. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (05) :1165-1195
[5]  
Dimitrov Dim14 Yuri, 2014, J. Fract. Calc. Appl., V5
[6]  
Dimitrov Y., 2018, J. Fract. Calc. Appl, V9, P35, DOI [https://doi.org/10.48550/arXiv.1605.06912, DOI 10.48550/ARXIV.1605.06912]
[7]  
Dimitrov Y., 2017, EC COMPUT SCI, V4, P23
[8]  
Dimitrov Y., 2016, J FRACT CALC APPL, V7, P175
[9]   High-Order Numerical Algorithms for Riesz Derivatives via Constructing New Generating Functions [J].
Ding, Hengfei ;
Li, Changpin .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (02) :759-784
[10]   HIGH-ORDER ALGORITHMS FOR RIESZ DERIVATIVE AND THEIR APPLICATIONS (III) [J].
Ding, Hengfei ;
Li, Changpin .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) :19-55