On Differential Equations Characterizing Legendrian Submanifolds of Sasakian Space Forms

被引:14
作者
Ali, Rifaqat [1 ]
Mofarreh, Fatemah [2 ]
Alluhaibi, Nadia [3 ]
Ali, Akram [4 ]
Ahmad, Iqbal [5 ]
机构
[1] Muhayil King Khalid Univ, Coll Arts & Sci, Dept Math, Abha 9004, Saudi Arabia
[2] Princess Nourah bint Abdulrahman Univ, Fac Sci, Dept Math Sci, Riyadh 11546, Saudi Arabia
[3] King Abdulaziz Univ, Coll Arts & Sci, Dept Math, Rabigh Campus, Jeddah 21911, Saudi Arabia
[4] King Khalid Univ, Coll Sci, Dept Math, Abha 9004, Saudi Arabia
[5] Qassim Univ Buraidah, Coll Engn, Al Qassim 51452, Saudi Arabia
关键词
legendrian submanifolds; sasakian space forms; obata differential equation; isometric immersion; CONFORMAL VECTOR-FIELDS; RIEMANNIAN-MANIFOLDS; BOCHNER FORMULA;
D O I
10.3390/math8020150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an estimate of the first eigenvalue of the Laplace operator on minimally immersed Legendrian submanifold Nn in Sasakian space forms e N 2n+1(e). We prove that a minimal Legendrian submanifolds in a Sasakian space form is isometric to a standard sphere S n if the Ricci curvature satisfies an extrinsic condition which includes a gradient of a function, the constant holomorphic sectional curvature of the ambient space and a dimension of Nn. We also obtain a Simons-type inequality for the same ambient space forms (N) over tilde (2n+1(epsilon)).
引用
收藏
页数:10
相关论文
共 22 条
[1]  
Ali A., 2018, Math. Nechr., V292, P234
[2]   The First Fundamental Equation and Generalized Wintgen-Type Inequalities for Submanifolds in Generalized Space Forms [J].
Aquib, Mohd ;
Boyom, Michel Nguiffo ;
Shahid, Mohammad Hasan ;
Vilcu, Gabriel-Eduard .
MATHEMATICS, 2019, 7 (12)
[3]  
Barbosa JN, 2003, ARCH MATH, V81, P478, DOI 10.1007/s00013-003-4767-0
[4]   Applications of Bochner formula to minimal submanifold of the sphere [J].
Barros, A .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (2-3) :196-201
[5]   A note on rigidity of the almost Ricci soliton [J].
Barros, Abdenago ;
Gomes, Jose N. ;
Ribeiro, Ernani, Jr. .
ARCHIV DER MATHEMATIK, 2013, 100 (05) :481-490
[6]  
Berger Marcel, 1971, Lecture Notes in Mathematics, P141
[7]  
Chavel I, 1984, EIGENVALUES RIEMANNI
[8]  
CHOI HI, 1983, J DIFFER GEOM, V18, P559, DOI 10.4310/jdg/1214437788
[9]   Characterizing spheres and Euclidean spaces by conformal vector fields [J].
Deshmukh, Sharief .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) :2135-2145
[10]   A NOTE ON CONFORMAL VECTOR FIELDS ON A RIEMANNIAN MANIFOLD [J].
Deshmukh, Sharief ;
Al-Solamy, Falleh .
COLLOQUIUM MATHEMATICUM, 2014, 136 (01) :65-73