A multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data

被引:19
作者
Frakt, AB
Karl, WC
Willsky, AS
机构
[1] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
[2] Boston Univ, Dept Elect Comp & Syst Engn, Boston, MA 02215 USA
关键词
anomaly detection; composite hypothesis testing; hypothesis zooming; nonlinear optimization; quadratic programming; tomography;
D O I
10.1109/83.679425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the problems of anomaly detection and localization from noisy tomographic data. These are characteristic of a class of problems that cannot be optimally solved because they involve hypothesis testing over hypothesis spaces with extremely large cardinality. Our multiscale hypothesis testing approach addresses the key issues associated with this class of problems. A multiscale hypothesis test is a hierarchical sequence of composite hypothesis tests that discards large portions of the hypothesis space with minimal computational burden and zooms in on the likely true hypothesis. For the anomaly detection and localization problems, hypothesis zooming corresponds to spatial zooming-anomalies are successively localized to finer and finer spatial scales. The key challenges we address include how to hierarchically divide a large hypothesis space and how to process the data at each stage of the hierarchy to decide which parts of the hypothesis space deserve more attention. To answer the former we draw on [1] and [7]-[10], For the latter, we pose and solve a nonlinear optimization problem for a decision statistic that maximally disambiguates composite hypotheses. With no more computational complexity, our optimized statistic shows substantial improvement over conventional approaches. We provide examples that demonstrate this and quantify how much performance is sacrificed by the use of a suboptimal method as compared to that achievable if the optimal approach were computationally feasible.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 15 条
[1]   HIERARCHY IN PICTURE SEGMENTATION - A STEPWISE OPTIMIZATION APPROACH [J].
BEAULIEU, JM ;
GOLDBERG, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (02) :150-163
[2]  
BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
[3]  
BHATIA M, 1994, THESIS MIT CAMBRIDGE
[4]  
BOYD SP, 1996, COMMUNICATION APR
[5]  
FRAKT AB, 1996, THESIS MIT CAMBRIDGE
[6]  
Gill M., 1981, Practical Optimization
[7]   PICTURE SEGMENTATION BY A TREE TRAVERSAL ALGORITHM [J].
HOROWITZ, SL ;
PAVLIDIS, T .
JOURNAL OF THE ACM, 1976, 23 (02) :368-388
[8]   REFINING IMAGE SEGMENTATION BY INTEGRATION OF EDGE AND REGION DATA [J].
LEMOIGNE, J ;
TILTON, JC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1995, 33 (03) :605-615
[9]  
MILLER EL, 1997, MULTIDMENS SYST SIGN, V8
[10]  
MILLER EL, 1994, P 1 INT C IM PROC AU