On the CCN (de) activation nonlinearities

被引:13
作者
Arabas, Sylwester [1 ,2 ]
Shima, Shin-ichiro [3 ]
机构
[1] Univ Warsaw, Fac Phys, Inst Geophys, Warsaw, Poland
[2] Chatham Financial Corp Europe, Krakow, Poland
[3] Univ Hyogo, Grad Sch Simulat Studies, Kobe, Hyogo, Japan
关键词
MICROPHYSICS MODEL; DROPLET FORMATION; GROWTH; NUCLEUS; CLOUDS; PRECIPITATION;
D O I
10.5194/npg-24-535-2017
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We take into consideration the evolution of particle size in a monodisperse aerosol population during activation and deactivation of cloud condensation nuclei (CCN). Our analysis reveals that the system undergoes a saddlenode bifurcation and a cusp catastrophe. The control parameters chosen for the analysis are the relative humidity and the particle concentration. An analytical estimate of the activation timescale is derived through estimation of the time spent in the saddle-node bifurcation bottleneck. Numerical integration of the system coupled with a simple air-parcel cloud model portrays two types of activation/deactivation hystereses: one associated with the kinetic limitations on droplet growth when the system is far from equilibrium, and one occurring close to equilibrium and associated with the cusp catastrophe. We discuss the presented analyses in context of the development of particle-based models of aerosolcloud interactions in which activation and deactivation impose stringent time-resolution constraints on numerical integration.
引用
收藏
页码:535 / 542
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2004, ELEMENTS APPL BIFURC
[2]   libcloudph++1.0: a single-moment bulk, double-moment bulk, and particle-based warm-rain microphysics library in C plus [J].
Arabas, S. ;
Jaruga, A. ;
Pawlowska, H. ;
Grabowski, W. W. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (06) :1677-1707
[3]   Adaptive method of lines for multi-component aerosol condensational growth and CCN activation [J].
Arabas, S. ;
Pawlowska, H. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (01) :15-31
[4]   Large-Eddy Simulations of Trade Wind Cumuli Using Particle-Based Microphysics with Monte Carlo Coalescence [J].
Arabas, Sylwester ;
Shima, Shin-ichiro .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2013, 70 (09) :2768-2777
[5]   Kinetic limitations on droplet formation in clouds [J].
Chuang, PY ;
Charlson, RJ ;
Seinfeld, JH .
NATURE, 1997, 390 (6660) :594-596
[6]   A model of coupled oscillators applied to the aerosol-cloud-precipitation system [J].
Feingold, G. ;
Koren, I. .
NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (06) :1011-1021
[7]  
Grabowski WW, 2013, ANNU REV FLUID MECH, V45, P293, DOI [10.1146/annurev-fluid-011212-140750, 10.1146/annurev-fluid-011212-148750]
[8]   Sensitivity estimations for cloud droplet formation in the vicinity of the high-alpine research station Jungfraujoch (3580 m a.s.l.) [J].
Hammer, E. ;
Bukowiecki, N. ;
Luo, B. P. ;
Lohmann, U. ;
Marcolli, C. ;
Weingartner, E. ;
Baltensperger, U. ;
Hoyle, C. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (18) :10309-10323
[9]   SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers [J].
Hindmarsh, AC ;
Brown, PN ;
Grant, KE ;
Lee, SL ;
Serban, R ;
Shumaker, DE ;
Woodward, CS .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (03) :363-396
[10]   The Effect of Spurious Cloud Edge Supersaturations in Lagrangian Cloud Models: An Analytical and Numerical Study [J].
Hoffmann, F. .
MONTHLY WEATHER REVIEW, 2016, 144 (01) :107-118