Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTix High-Entropy Alloys

被引:20
作者
Guo, Jun [1 ]
Huang, Xuefei [1 ]
Huang, Weigang [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
关键词
cleavage facture; high-entropy alloy; mechanical properties; microstructure; SOLID-SOLUTION; COMPRESSIVE PROPERTIES; PHASE-STABILITY; RESISTANCE; BEHAVIOR; ELEMENT;
D O I
10.1007/s11665-017-2742-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
FeCrMoVTix (x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTix alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.
引用
收藏
页码:3071 / 3078
页数:8
相关论文
共 48 条
[1]   The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys [J].
Chang, Yao-Jen ;
Yeh, An-Chou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 653 :379-385
[2]   Effect of Zr content on microstructure and mechanical properties of AlCoCrFeNi high entropy alloy [J].
Chen, Jian ;
Niu, Pengyun ;
Liu, Yunzi ;
Lu, Yukun ;
Wang, Xianhui ;
Peng, Yuli ;
Liu, Jiangnan .
MATERIALS & DESIGN, 2016, 94 :39-44
[3]   Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys [J].
Chen, Shin-Tsung ;
Tang, Wei-Yeh ;
Kuo, Yen-Fu ;
Chen, Sheng-Yao ;
Tsau, Chun-Huei ;
Shun, Tao-Tsung ;
Yeh, Jien-Wei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (21-22) :5818-5825
[4]   Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Tsai, Che-Wei ;
Yang, Nai-Hao ;
Chang, Shou-Yi ;
Yeh, Jien-Wei ;
Chen, Swe-Kai ;
Lin, Su-Jien .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 551 :12-18
[5]   On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy [J].
Couzinie, J. -Ph. ;
Lilensten, L. ;
Champion, Y. ;
Dirras, G. ;
Perriere, L. ;
Guillot, I. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 645 :255-263
[6]   Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy [J].
Dirras, G. ;
Gubicza, J. ;
Heczel, A. ;
Lilensten, L. ;
Couzinie, J. -P. ;
Perriere, L. ;
Guillot, I. ;
Hocini, A. .
MATERIALS CHARACTERIZATION, 2015, 108 :1-7
[7]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[8]   Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J].
Gorr, B. ;
Azim, M. ;
Christ, H. -J. ;
Mueller, T. ;
Schliephake, D. ;
Heilmaier, M. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 624 :270-278
[9]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[10]   More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J].
Guo, Sheng ;
Hu, Qiang ;
Ng, Chun ;
Liu, C. T. .
INTERMETALLICS, 2013, 41 :96-103