Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics

被引:13
作者
Zeng, Qingsheng [1 ]
Wang, Sheng [1 ]
Yang, Leijing [1 ]
Wang, Zhenxing [1 ]
Zhang, Zhiyong [1 ]
Peng, Lianmao [1 ]
Zhou, Weiya [2 ]
Xie, Sishen [2 ]
机构
[1] Peking Univ, Key Lab Phys & Chem Nanodevices, Dept Elect, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Carbon nanotube; photovoltaic; diodes; thin film; doping-free; TRANSPARENT; TRANSISTORS; GENERATION; CIRCUITS;
D O I
10.1007/s12274-011-0182-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Random networks of single-walled carbon nanotubes (SWCNTs) were have been grown by chemical vapor deposition on silicon wafers and used for fabricating field-effect transistors (FETs) using symmetric Pd contacts and diodes using asymmetrical Pd and Sc contacts. For a short channel FET or diode with a channel length of about 1 mu m or less, the device works in the direct transport regime, while for a longer channel device the transport mechanism changes to percolation. Detailed electronic and photovoltaic (PV) characterizations of these carbon nanotube (CNT) thin-film devices was carried out. While as-fabricated FETs exhibited typical p-type transfer characteristics, with a large current ON/OFF ratio of more than 10(4) when metallic CNTs were removed via a controlled breakdown, it was found that the threshold voltage for the devices was typically very large, of the order of about 10 V. This situation was greatly improved when the device was coated with a passivation layer of 12 nm HfO2, which effectively moved the threshold voltages of both FET and diode back to center around zero or turned these device to their OFF states when no bias was applied on the gate. PV measurements were then made on the short channel diodes under infrared laser illumination. It was shown that under an illumination power density of 1.5 kW/cm(2), the device resulted in an open circuit voltage V (OC) = 0.21 V and a short circuit current I (SC) = 3.74 nA. Furthermore, we compared PV characteristics of CNT film diodes with different channel lengths, and found that the power transform efficiency decreased significantly when the device changed from the direct transport to the percolation regime.
引用
收藏
页码:33 / 42
页数:10
相关论文
共 34 条
[1]   The Role of the Oxygen/Water Redox Couple in Suppressing Electron Conduction in Field-Effect Transistors [J].
Aguirre, Carla M. ;
Levesque, Pierre L. ;
Paillet, Matthieu ;
Lapointe, Francois ;
St-Antoine, Benoit C. ;
Desjardins, Patrick ;
Martel, Richard .
ADVANCED MATERIALS, 2009, 21 (30) :3087-+
[2]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[3]   Transparent and flexible carbon nanotube transistors [J].
Artukovic, E ;
Kaempgen, M ;
Hecht, DS ;
Roth, S ;
GrUner, G .
NANO LETTERS, 2005, 5 (04) :757-760
[4]   Carbon-nanotube photonics and optoelectronics [J].
Avouris, Phaedon ;
Freitag, Marcus ;
Perebeinos, Vasili .
NATURE PHOTONICS, 2008, 2 (06) :341-350
[5]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[6]   Nanowelded carbon-nanotube-based solar microcells [J].
Chen, Changxin ;
Lu, Yang ;
Kong, Eric S. ;
Zhang, Yafei ;
Lee, Shuit-Tong .
SMALL, 2008, 4 (09) :1313-1318
[7]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[8]   Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices [J].
Ding, Li ;
Wang, Sheng ;
Zhang, Zhiyong ;
Zeng, Qingsheng ;
Wang, Zhenxing ;
Pei, Tian ;
Yang, Leijing ;
Liang, Xuelei ;
Shen, Jun ;
Chen, Qing ;
Cui, Rongli ;
Li, Yan ;
Peng, Lian-Mao .
NANO LETTERS, 2009, 9 (12) :4209-4214
[9]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[10]   Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays [J].
Engel, Michael ;
Small, Joshua P. ;
Steiner, Mathias ;
Freitag, Marcus ;
Green, Alexander A. ;
Hersam, Mark C. ;
Avouris, Phaedon .
ACS NANO, 2008, 2 (12) :2445-2452