Ordinal Classification Using Single-Model Evidential Extreme Learning Machine

被引:0
作者
Ma, Liyao [1 ]
Wei, Peng [1 ]
Sun, Bin [1 ]
机构
[1] Univ Jinan, Sch Elect Engn, Jinan 250022, Peoples R China
来源
BELIEF FUNCTIONS: THEORY AND APPLICATIONS (BELIEF 2022) | 2022年 / 13506卷
关键词
Ordinal classification; Dempster-Shafer theory; Extreme learning machine; REGRESSION;
D O I
10.1007/978-3-031-17801-6_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The extreme learning machine model for ordinal classification is extended to the uncertain case. Dealing with epistemic uncertainty by Dempster-Shafer theory, in this paper, the single-model multi-output extreme learning machine is learned from evidential training data. Taking both the uncertainty and the ordering relation of labels into consideration, given mass functions of training labels, different evidential encoding schemes for model output are proposed. On that basis, adopting the structure of a single extreme learning machine model with multiple output nodes, the construction procedure of evidential ordinal classification model is designed. According to the encoding mechanism and learning details, when there is no epistemic uncertainty in training labels, the proposed evidential ordinal method can be reduced to the traditional ordinal one. Experiments on artificial and UCI datasets illustrate the practical implementation and effectiveness of proposed evidential extreme learning machine for ordinal classification.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 15 条
[1]   Ordinal Regression Methods: Survey and Experimental Study [J].
Antonio Gutierrez, Pedro ;
Perez-Ortiz, Maria ;
Sanchez-Monedero, Javier ;
Fernandez-Navarro, Francisco ;
Hervas-Martinez, Cesar .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (01) :127-146
[2]   Belief functions and rough sets: Survey and new insights [J].
Campagner, Andrea ;
Ciucci, Davide ;
Denoeux, Thierry .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2022, 143 :192-215
[3]   UPPER AND LOWER PROBABILITIES INDUCED BY A MULTIVALUED MAPPING [J].
DEMPSTER, AP .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :325-&
[4]   Ordinal extreme learning machine [J].
Deng, Wan-Yu ;
Zheng, Qing-Hua ;
Lian, Shiguo ;
Chen, Lin ;
Wang, Xin .
NEUROCOMPUTING, 2010, 74 (1-3) :447-456
[5]  
Destercke Sebastien, 2014, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2014. Proceedings: LNCS 8724, P323, DOI 10.1007/978-3-662-44848-9_21
[6]   On the median in imprecise ordinal problems [J].
Destercke, Sebastien .
ANNALS OF OPERATIONS RESEARCH, 2017, 256 (02) :375-392
[7]  
Dua D., 2019, UCI MACHINE LEARNING
[8]  
He YP, 2021, Arxiv, DOI arXiv:2104.05416
[9]  
He YP, 2021, Arxiv, DOI arXiv:2102.12575
[10]   Extreme learning machine: Theory and applications [J].
Huang, Guang-Bin ;
Zhu, Qin-Yu ;
Siew, Chee-Kheong .
NEUROCOMPUTING, 2006, 70 (1-3) :489-501