Robust wall states in rapidly rotating Rayleigh-Benard convection

被引:54
作者
Favier, Benjamin [1 ]
Knobloch, Edgar [2 ]
机构
[1] Aix Marseille Univ, CNRS, IRPHE, Cent Marseille, Marseille, France
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
convection in cavities; rotating flows; ASYMMETRIC MODES; PART; INSTABILITY; STABILITY; LAYERS; WAVES; FLOW;
D O I
10.1017/jfm.2020.310
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show, using direct numerical simulations with experimentally realizable boundary conditions, that wall modes in Rayleigh-Benard convection in a rapidly rotating cylinder persist even very far from their linear onset. These nonlinear wall states survive in the presence of turbulence in the bulk and are robust with respect to changes in the shape of the boundary of the container. In this sense, these states behave much like the topologically protected states present in two-dimensional chiral systems even though rotating convection is a three-dimensional nonlinear driven dissipative system. We suggest that the robustness of this nonlinear state may provide an explanation for the strong zonal flows observed recently in experiments and simulations of rapidly rotating convection at high Rayleigh number.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns [J].
Aurnou, Jonathan M. ;
Bertin, Vincent ;
Grannan, Alexander M. ;
Horn, Susanne ;
Vogt, Tobias .
JOURNAL OF FLUID MECHANICS, 2018, 846 :846-876
[2]   Odd viscosity in chiral active fluids [J].
Banerjee, Debarghya ;
Souslov, Anton ;
Abanov, Alexander G. ;
Vitelli, Vincenzo .
NATURE COMMUNICATIONS, 2017, 8
[3]   SHEAR FLOW INSTABILITIES IN ROTATING SYSTEMS [J].
BUSSE, FH .
JOURNAL OF FLUID MECHANICS, 1968, 33 :577-&
[4]  
Chandrasekhar S., 2013, Hydrodynamic and Hydromagnetic Stability
[5]   PATTERN SELECTION IN ROTATING CONVECTION WITH EXPERIMENTAL BOUNDARY-CONDITIONS [J].
CLUNE, T ;
KNOBLOCH, E .
PHYSICAL REVIEW E, 1993, 47 (04) :2536-2550
[6]   Topological localization in out-of-equilibrium dissipative systems [J].
Dasbiswas, Kinjal ;
Mandadapu, Kranthi K. ;
Vaikuntanathan, Suriyanarayanan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (39) :E9031-E9040
[7]   Turbulent rotating convection confined in a slender cylinder: The sidewall circulation [J].
de Wit, Xander M. ;
Aguirre-Guzman, Andres ;
Madonia, Matteo ;
Cheng, Jonathan S. ;
Clercx, Herman J. H. ;
Kunnen, Rudie P. J. .
PHYSICAL REVIEW FLUIDS, 2020, 5 (02)
[8]   Topological origin of equatorial waves [J].
Delplace, Pierre ;
Marston, J. B. ;
Venaille, Antoine .
SCIENCE, 2017, 358 (6366) :1075-1077
[9]   HOPF-BIFURCATION WITH BROKEN REFLECTION SYMMETRY IN ROTATING RAYLEIGH-BENARD CONVECTION [J].
ECKE, RE ;
ZHONG, F ;
KNOBLOCH, E .
EUROPHYSICS LETTERS, 1992, 19 (03) :177-182
[10]   Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection [J].
Favier, B. ;
Silvers, L. J. ;
Proctor, M. R. E. .
PHYSICS OF FLUIDS, 2014, 26 (09)