In this paper there is described the influence of various modifications of the laser resonator on the energy of laser radiation studied for the application of material drilling. We used pulsed 150W Nd:YAG laser from LASAG AG company, Switzerland. This laser was developed for industrial material processing - cutting, welding and drilling. The diameter and divergence of the output laser beam can vary by replacement of optical elements in the laser resonator and by change of the distance between them. Heating of Nd:YAG crystal during laser action resulting in its function as an internal lens has an important effect on a beam quality. This quality is characterized by a beam parameter product (BPP) depending on a charging power and type of resonator. The goal of our experiment is to find minimal parameters for cutting and drilling of some metallic sheets with thickness From 0.1 mm to 10 mm (carbon steel, stainless steel, copper, aluminum, brass) and to verify an increasing beam quality by reducing a laser output power and by modification of a resonator arrangement. Nitrogen was used as an assist gas. Measured experimental results were summarized in graphs and tables and were prepared for quick reference of laser parameters used for processing various work-pieces.