Multi-level Attentive Skin Lesion Learning for Melanoma Classification

被引:3
|
作者
Wang, Xiaohong [1 ]
Huang, Weimin [1 ]
Lu, Zhongkang [1 ]
Huang, Su [1 ]
机构
[1] ASTAR, Inst Infocomm Res, Singapore, Singapore
来源
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC) | 2021年
关键词
melanoma classification; multi-level attentive skin lesion learning; skin lesion localization; weighted feature integration;
D O I
10.1109/EMBC46164.2021.9629858
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Melanoma classification plays an important role in skin lesion diagnosis. Nevertheless, melanoma classification is a challenging task, due to the appearance variation of the skin lesions, and the interference of the noises from dermoscopic imaging. In this paper, we propose a multi-level attentive skin lesion learning (MASLL) network to enhance melanoma classification. Specifically, we design a local learning branch with a skin lesion localization (SLL) module to assist the network in learning the lesion features from the region of interest. In addition, we propose a weighted feature integration (WFI) module to fuse the lesion information from the global and local branches, which further enhances the feature discriminative capability of the skin lesions. Experimental results on ISIC 2017 dataset show the effectiveness of the proposed method on melanoma classification.
引用
收藏
页码:3924 / 3927
页数:4
相关论文
共 10 条
  • [1] Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques
    Hameed, Nazia
    Shabut, Antesar M.
    Ghosh, Miltu K.
    Hossain, M. A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 141
  • [2] Deep CNN and Data Augmentation for Skin Lesion Classification
    Tri-Cong Pham
    Luong, Chi-Mai
    Visani, Muriel
    Van-Dung Hoang
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2018, PT II, 2018, 10752 : 573 - 582
  • [3] SKIN LESION CLASSIFICATION USING HYBRID DEEP NEURAL NETWORKS
    Mahbod, Amirreza
    Schaefer, Gerald
    Wang, Chunliang
    Ecker, Rupert
    Ellinger, Isabella
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1229 - 1233
  • [4] Arithmetic Optimization with Ensemble Deep Transfer Learning Based Melanoma Classification
    Kalyani, K.
    Althubiti, Sara A.
    Ahmed, Mohammed Altaf
    Lydia, E. Laxmi
    Kadry, Seifedine
    Han, Neunggyu
    Nam, Yunyoung
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (01): : 149 - 164
  • [5] Melanoma Classification in Dermoscopy Images via Ensemble Learning on Deep Neural Network
    Song, Jie
    Li, Jiawei
    Ma, Shiqiang
    Tang, Jijun
    Guo, Fei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 751 - 756
  • [6] Two-Stage Deep Neural Network via Ensemble Learning for Melanoma Classification
    Ding, Jiaqi
    Song, Jie
    Li, Jiawei
    Tang, Jijun
    Guo, Fei
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 9
  • [7] Classification of melanoma based on feature similarity measurement for codebook learning in the bag-of-features model
    Hu, Kai
    Niu, Xiaorui
    Liu, Si
    Zhang, Yuan
    Cao, Chunhong
    Xiao, Fen
    Yang, Wanchun
    Gao, Xieping
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 51 : 200 - 209
  • [8] Machine Learning Approaches for Skin Cancer Classification from Dermoscopic Images: A Systematic Review
    Grignaffini, Flavia
    Barbuto, Francesco
    Piazzo, Lorenzo
    Troiano, Maurizio
    Simeoni, Patrizio
    Mangini, Fabio
    Pellacani, Giovanni
    Cantisani, Carmen
    Frezza, Fabrizio
    ALGORITHMS, 2022, 15 (11)
  • [9] Multi-Class Skin Diseases Classification Using Deep Convolutional Neural Network and Support Vector Machine
    Hameed, Nazia
    Shabut, Antesar M.
    Hossain, M. A.
    2018 12TH INTERNATIONAL CONFERENCE ON SOFTWARE, KNOWLEDGE, INFORMATION MANAGEMENT & APPLICATIONS (SKIMA), 2018, : 23 - +
  • [10] Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning
    Kassem, Mohamed A.
    Hosny, Khalid M.
    Fouad, Mohamed M.
    IEEE ACCESS, 2020, 8 : 114822 - 114832