One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion

被引:305
作者
Li, Xin [1 ]
Wang, John [2 ]
机构
[1] Natl Univ Singapore, Ctr Adv 2D Mat, Singapore, Singapore
[2] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117574, Singapore
关键词
1D-2D synergized nanostructure; cactus-like nanostructure; core; shell nanostructure; energy storage; conversion; sandwich-like nanostructure; BINDER-FREE ELECTRODE; ASYMMETRIC SUPERCAPACITOR; NICO2O4; NANOSHEETS; CARBON NANOFIBERS; IN-SITU; EFFICIENT ELECTROCATALYST; COMPOSITE ELECTRODES; HIERARCHICAL NICKEL; NI FOAM; GRAPHENE;
D O I
10.1002/inf2.12040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To address the worldwide energy challenges, advanced energy storage and conversion systems with high comprehensive performances, as the promising technologies, are inevitably required on a timely basis. The performance of these energy systems is intimately dependent on the properties of their electrodes. In addition to the electrode materials selection and their compositional optimization, materials fabrication with the designed nanostructure also provides significant benefits for their performances. In the past decade, considerable efforts have been made to promote the search for multidimensional nanostructures containing both one-dimensional (1D) and two-dimensional (2D) nanostructures in synergy, namely, 1D-2D synergized nanostructures. By developing the freestanding electrodes with such unique nanoarchitectures, the structural features and electroactivities of each component can be manifested, where the synergistic properties among them can be simultaneously obtained for further enhanced properties, such as the increased number of active sites, fast electronic/ionic transport, and so forth. This review overviews the state-of-the-art on the 1D-2D synergized nanostructures, which can be broadly divided into three groups, namely, core/shell, cactus-like, and sandwich-like nanostructures. For each category, we introduce them from the aspects of structural features, fabrication methodologies to their successful applications in different types of energy storage/conversion devices, including rechargeable batteries, supercapacitors, water splitting, and so forth. Finally, the main challenges faced by and perspectives on the 1D-2D synergized nanostructures are discussed. image
引用
收藏
页码:3 / 32
页数:30
相关论文
共 164 条
[1]   Epitaxial Heterogeneous Interfaces on N-NiMoO4/NiS2 Nanowires/Nanosheets to Boost Hydrogen and Oxygen Production for Overall Water Splitting [J].
An, Li ;
Feng, Jianrui ;
Zhang, Yu ;
Wang, Rui ;
Liu, Hanwen ;
Wang, Gui-Chang ;
Cheng, Fangyi ;
Xi, Pinxian .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (01)
[2]   Interlaced NiS2-MoS2 nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions [J].
An, Tiance ;
Wang, Yang ;
Tang, Jing ;
Wei, Wei ;
Cui, Xiaoqi ;
Alenizi, Abdullah M. ;
Zhang, Lijuan ;
Zheng, Gengfeng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (35) :13439-13443
[3]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[4]   Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes) [J].
Anasori, Babak ;
Xie, Yu ;
Beidaghi, Majid ;
Lu, Jun ;
Hosler, Brian C. ;
Hultman, Lars ;
Kent, Paul R. C. ;
Gogotsi, Yury ;
Barsoum, Michel W. .
ACS NANO, 2015, 9 (10) :9507-9516
[5]   Directing the Outcome of CO2 Reduction at Bismuth Cathodes Using Varied Ionic Liquid Promoters [J].
Atifi, Abderrahman ;
Boyce, David W. ;
DiMeglio, John L. ;
Rosenthal, Joel .
ACS CATALYSIS, 2018, 8 (04) :2857-2863
[6]   Spray coating methods for polymer solar cells fabrication: A review [J].
Aziz, F. ;
Ismail, A. F. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 39 :416-425
[7]   A manganese-hydrogen battery with potential for grid-scale energy storage [J].
Chen, Wei ;
Li, Guodong ;
Pei, Allen ;
Li, Yuzhang ;
Liao, Lei ;
Wang, Hongxia ;
Wan, Jiayu ;
Liang, Zheng ;
Chen, Guangxu ;
Zhang, Hao ;
Wang, Jiangyan ;
Cui, Yi .
NATURE ENERGY, 2018, 3 (05) :428-435
[8]   Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode [J].
Cheng, Yongliang ;
Huang, Liang ;
Xiao, Xu ;
Yao, Bin ;
Yuan, Longyan ;
Li, Tianqi ;
Hu, Zhimi ;
Wang, Bo ;
Wan, Jun ;
Zhou, Jun .
NANO ENERGY, 2015, 15 :66-74
[9]   Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides [J].
Chia, Xinyi ;
Eng, Alex Yong Sheng ;
Ambrosi, Adriano ;
Tan, Shu Min ;
Pumera, Martin .
CHEMICAL REVIEWS, 2015, 115 (21) :11941-11966
[10]   Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core-shell structure in energy storage and oxygen evolution [J].
Chiu, Kuan-Lin ;
Lin, Lu-Yin .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (09) :4626-4639