Revisit the over-relaxed proximal point algorithm

被引:0
作者
Huang, Zhenyu [1 ]
Noor, Muhammad Aslam [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
Variational inclusions; Over-relaxed A-maximal m-monotone mappings; Proximal point algorithms; Hilbert spaces; VARIATIONAL-INEQUALITIES; MONOTONE-OPERATORS; CONVERGENCE; MAPPINGS;
D O I
10.1016/j.aml.2016.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to revisit the proximal point algorithms with over-relaxed A-maximal m-relaxed monotone mappings for solving variational inclusions in Hilbert spaces without Lipschitz continuity requirement to overcome the drawbacks of the paper (Verma, 2009) [5]. We affirmatively answer the open question mentioned in the paper (Huang and Noor, 2012) [6]. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 62
页数:8
相关论文
共 20 条
[1]   Role of Relative A-Maximal Monotonicity in Overrelaxed Proximal-Point Algorithms with Applications [J].
Agarwal, R. P. ;
Verma, R. U. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 143 (01) :1-15
[2]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[4]  
Giannessi F., 1995, Variational inequalities and network equilibrium problems
[5]  
Glowinski R., 1981, Numerical Analysis of Variational Inequalities
[6]   Studies on Common Solutions of a Variational Inequality and a Fixed-Point Problem [J].
Huang, Z. Y. ;
Noor, M. A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (02) :525-535
[7]   On an Open Question of Takahashi for Nonexpansive Mappings and Inverse Strongly Monotone Mappings [J].
Huang, Z. Y. ;
Noor, M. A. ;
Al-Said, E. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 147 (01) :194-204
[8]   On the convergence rate of the over-relaxed proximal point algorithm [J].
Huang, Zhenyu ;
Noor, Muhammad Aslam .
APPLIED MATHEMATICS LETTERS, 2012, 25 (11) :1740-1743
[9]   Inexact variants of the proximal point algorithm without monotonicity [J].
Iusem, AN ;
Pennanen, T ;
Svaiter, BF .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (04) :1080-1097
[10]  
Krasnoselskii M.A., 1955, USP MAT NAUK, V10, P113