Distributed Multi-Target Tracking in Camera Networks

被引:7
作者
Casao, Sara [1 ]
Naya, Abel [1 ]
Murillo, Ana C. [1 ]
Montijano, Eduardo [1 ]
机构
[1] Univ Zaragoza, DIIS I3A, RoPeRt Grp, Zaragoza, Spain
来源
2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021) | 2021年
关键词
D O I
10.1109/ICRA48506.2021.9562055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most recent works on multi-target tracking with multiple cameras focus on centralized systems. In contrast. this paper presents a multi-target tracking approach implemented in a distributed camera network. The advantages of distributed systems lie in lighter communication management, greater robustness to failures and local decision making. On the other hand, data association and information fusion are more challenging than in a centralized setup, mostly due to the lack of global and complete information. The proposed algorithm boosts the benefits of the Distributed-Consensus Kalman Filter with the support of a re-identification network and a distributed tracker manager module to facilitate consistent information. These techniques complement each other and facilitate the cross-camera data association in a simple and effective manner. We evaluate the whole system with known public data sets under different conditions demonstrating the advantages of combining all the modules. In addition, we compare our algorithm to some existing centralized tracking methods, outperforming their behavior in terms of accuracy and bandwidth usage.
引用
收藏
页码:1903 / 1909
页数:7
相关论文
共 34 条
  • [1] Multi Target Tracking from Drones by Learning from Generalized Graph Differences
    Ardo, Hakan
    Nilsson, Mikael
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 46 - 54
  • [2] Multiple Object Tracking Using K-Shortest Paths Optimization
    Berclaz, Jerome
    Fleuret, Francois
    Tueretken, Engin
    Fua, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (09) : 1806 - 1819
  • [3] Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics
    Bernardin, Keni
    Stiefelhagen, Rainer
    [J]. EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2008, 2008 (1)
  • [4] Chandra R, 2019, IEEE INT C INT ROBOT, P468, DOI [10.1109/iros40897.2019.8968470, 10.1109/IROS40897.2019.8968470]
  • [5] WILDTRACK: A Multi-camera HD Dataset for Dense Unscripted Pedestrian Detection
    Chavdarova, Tatjana
    Baque, Pierre
    Bouquet, Stephane
    Maksai, Andrii
    Jose, Cijo
    Bagautdinov, Timur
    Lettry, Louis
    Fua, Pascal
    Van Gool, Luc
    Fleuret, Francois
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5030 - 5039
  • [6] Chen JH, 2018, IEEE INT CONF ROBOT, P4348
  • [7] ABD-Net: Attentive but Diverse Person Re-Identification
    Chen, Tianlong
    Ding, Shaojin
    Xie, Jingyi
    Yuan, Ye
    Chen, Wuyang
    Yang, Yang
    Ren, Zhou
    Wang, Zhangyang
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8350 - 8360
  • [8] de Langis Karin, 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA), P11140, DOI 10.1109/ICRA40945.2020.9197308
  • [9] MOTChallenge: A Benchmark for Single-Camera Multiple Target Tracking
    Dendorfer, Patrick
    Osep, Aljosa
    Milan, Anton
    Schindler, Konrad
    Cremers, Daniel
    Reid, Ian
    Roth, Stefan
    Leal-Taixe, Laura
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 845 - 881
  • [10] Safety barrier functions and multi-camera tracking for human-robot shared environment
    Ferraguti, Federica
    Landi, Chiara Talignani
    Costi, Silvia
    Bonfe, Marcello
    Farsoni, Saverio
    Secchi, Cristian
    Fantuzzi, Cesare
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2020, 124