Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization

被引:37
作者
Jose Mostazo-Lopez, Maria [1 ,2 ]
Ruiz-Rosas, Ramiro [1 ,2 ]
Morallon, Emilia [2 ,3 ]
Cazorla-Amoros, Diego [1 ,2 ]
机构
[1] Univ Alicante, Dept Quim Inorgan, E-03080 Alicante, Spain
[2] Univ Alicante, Inst Univ Mat, E-03080 Alicante, Spain
[3] Univ Alicante, Dept Quim Fis, E-03080 Alicante, Spain
关键词
SURFACE-CHEMISTRY; POROUS CARBONS; CAPACITANCE; PERFORMANCE; CO2; SUPERCAPACITORS; ADSORPTION; ELECTRODES; NANOTUBES; OXYGEN;
D O I
10.1016/j.carbon.2015.04.089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m(2)/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:252 / 265
页数:14
相关论文
共 60 条
[1]   Amination of activated carbon and adsorption characteristics of its aminated surface [J].
Abe, M ;
Kawashima, K ;
Kozawa, K ;
Sakai, H ;
Kaneko, K .
LANGMUIR, 2000, 16 (11) :5059-5063
[2]   Nitrogen-doped activated carbons derived from a co-polymer for high supercapacitor performance [J].
Alabadi, Akram ;
Yang, Xinjia ;
Dong, Zehua ;
Li, Zhen ;
Tan, Bien .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (30) :11697-11705
[3]   Anchoring of organic molecules onto activated carbon [J].
Alves, JAC ;
Freire, C ;
de Castro, B ;
Figueiredo, JL .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2001, 189 (1-3) :75-84
[4]  
Bandosz TJ, 2006, INTERFACE SCI TECHNO, V7, P159
[5]  
Bandosz T.J., 2008, CARBON MAT CATALYSIS, P45, DOI DOI 10.1002/9780470403709.CH2
[6]   The characterization of activated carbons with oxygen and nitrogen surface groups [J].
Biniak, S ;
Szymanski, G ;
Siedlewski, J ;
Swiatkowski, A .
CARBON, 1997, 35 (12) :1799-1810
[7]   Chemical and electrochemical characterization of porous carbon materials [J].
Bleda-Martinez, M. J. ;
Lozano-Castello, D. ;
Morallon, E. ;
Cazorla-Amoros, D. ;
Linares-Solano, A. .
CARBON, 2006, 44 (13) :2642-2651
[8]   Role of surface chemistry on electric double layer capacitance of carbon materials [J].
Bleda-Martínez, MJ ;
Maciá-Agulló, JA ;
Lozano-Castelló, D ;
Morallón, E ;
Cazorla-Amorós, D ;
Linares-Solano, A .
CARBON, 2005, 43 (13) :2677-2684
[9]   Surface oxides on carbon and their analysis: a critical assessment [J].
Boehm, HP .
CARBON, 2002, 40 (02) :145-149
[10]   CO2 as an adsorptive to characterize carbon molecular sieves and activated carbons [J].
Cazorla-Amoros, D ;
Alcaniz-Monge, J ;
de la Casa-Lillo, MA ;
Linares-Solano, A .
LANGMUIR, 1998, 14 (16) :4589-4596