Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels

被引:48
作者
Depardieu, Florence [1 ]
Bikard, David [1 ]
机构
[1] Inst Pasteur, Grp Biol Synthese, F-75015 Paris, France
基金
欧洲研究理事会;
关键词
CRISPRi; dCas9; Knockdown; Gene silencing; Staphylococcus aureus; Escherichia coli; RNA; SEQUENCE; INTERFERENCE; PLASMIDS; PROTEIN; FAMILY; CAS9; TRANSFORMATION; MUTAGENESIS; RESISTANCE;
D O I
10.1016/j.ymeth.2019.07.024
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The catalytic null mutant of the Cas9 endonuclease from the bacterial CRISPR immune system, known as dCas9, can be guided by a small RNA to bind DNA sequences of interest and block gene transcription in a strategy known as CRISPRi. This powerful gene silencing method has already been used in a large number of species and in high throughput screens. Here we provide detailed design rules, methods and novel vectors to perform CRISPRi experiments in S. aureus and in E. coli, using the well characterized dCas9 protein from S. pyogenes. In particular, we describe a vector based on plasmid pC194 which is broadly used in Firmicutes, as well as a vector based on the very broad host-range rolling circle plasmid pLZ12, reported to replicate in both Firmicutes and Proteobacteria. A potential caveat of adapting dCas9 tools to various bacterial species is that dCas9 was shown to be toxic when expressed too strongly. We describe a method to optimize the expression level of dCas9 in order to avoid toxicity while ensuring strong on-target repression activity. We demonstrate this method by optimizing a pLZ12 based vector originally developed for S. aureus so that it can work in E. colt. This article should provide all the resources required to perform CRISPRi experiments in a broad range of bacterial species.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 62 条
[1]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[2]   Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials [J].
Bikard, David ;
Euler, Chad W. ;
Jiang, Wenyan ;
Nussenzweig, Philip M. ;
Goldberg, Gregory W. ;
Duportet, Xavier ;
Fischetti, Vincent A. ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2014, 32 (11) :1146-1150
[3]   Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system [J].
Bikard, David ;
Jiang, Wenyan ;
Samai, Poulami ;
Hochschild, Ann ;
Zhang, Feng ;
Marraffini, Luciano A. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7429-7437
[4]   CRISPR Interference Can Prevent Natural Transformation and Virulence Acquisition during In Vivo Bacterial Infection [J].
Bikard, David ;
Hatoum-Aslan, Asma ;
Mucida, Daniel ;
Marraffini, Luciano A. .
CELL HOST & MICROBE, 2012, 12 (02) :177-186
[5]   Shuttle expression plasmids for genetic studies in Streptococcus mutans [J].
Biswas, Indranil ;
Jha, Jyoti K. ;
Fromm, Nicholas .
MICROBIOLOGY-SGM, 2008, 154 :2275-2282
[6]   High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding [J].
Boyle, Evan A. ;
Andreasson, Johan O. L. ;
Chircus, Lauren M. ;
Sternberg, Samuel H. ;
Wu, Michelle J. ;
Guegler, Chantal K. ;
Doudna, Jennifer A. ;
Greenleaf, William J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (21) :5461-5466
[7]   Rational Design of a Plasmid Origin That Replicates Efficiently in Both Gram-Positive and Gram-Negative Bacteria [J].
Bryksin, Anton V. ;
Matsumura, Ichiro .
PLOS ONE, 2010, 5 (10)
[8]   Model-Driven Engineering of RNA Devices to Quantitatively Program Gene Expression [J].
Carothers, James M. ;
Goler, Jonathan A. ;
Juminaga, Darmawi ;
Keasling, Jay D. .
SCIENCE, 2011, 334 (6063) :1716-1719
[9]  
Ceroni F, 2015, NAT METHODS, V12, P415, DOI [10.1038/NMETH.3339, 10.1038/nmeth.3339]
[10]   Creating small transcription activating RNAs [J].
Chappell, James ;
Takahashi, Melissa K. ;
Lucks, Julius B. .
NATURE CHEMICAL BIOLOGY, 2015, 11 (03) :214-U165