Global Well-Posedness and Temporal Decay Estimates for the 3D Nematic Liquid Crystal Flows

被引:8
|
作者
Liu, Qiao [1 ]
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Minist Educ China, Key Lab High Performance Comp & Stochast Informat, Changsha 410081, Hunan, Peoples R China
关键词
Nematic liquid crystal flows; Global well-posedness; Temporal decay estimate; Besov space; 76A15; 35B65; 35Q35; NAVIER-STOKES EQUATIONS; TATARU SOLUTIONS; WEAK SOLUTIONS; REGULARITY; KOCH;
D O I
10.1007/s00021-018-0373-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate global well-posedness and large time behavior of the Cauchy problem for the 3D incompressible nematic liquid crystal flows. By using the advantage of suitable weighted function, we show that for any initial data is a constant unit vector.
引用
收藏
页码:1459 / 1485
页数:27
相关论文
共 50 条
  • [31] GLOBAL WELL-POSEDNESS OF THE 3D GENERALIZED BOUSSINESQ EQUATIONS
    Xu, Bo
    Zhou, Jiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4821 - 4829
  • [32] Global well-posedness of the 3D hydrostatic magnetohydrodynamics equations
    Du, Lili
    Li, Dan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10040 - 10067
  • [33] Well-Posedness of Nematic Liquid Crystal Flow in Luloc3 (R3)
    Hineman, Jay Lawrence
    Wang, Changyou
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) : 177 - 218
  • [34] Global regularity to the 3D incompressible nematic liquid crystal flows with vacuum
    Yu, Haibo
    Zhang, Peixin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 209 - 222
  • [35] The global well-posedness of the Cauchy problem for a liquid crystal system
    Wen, Shenglan
    Huang, Lan
    Su, Keqin
    APPLICABLE ANALYSIS, 2018, 97 (14) : 2485 - 2495
  • [36] Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals
    Guo, Boling
    Xi, Xiaoyu
    Xie, Binqiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) : 1413 - 1460
  • [37] Global well-posedness of 3D incompressible inhomogeneous magnetohydrodynamic equations
    Huang, Tian
    Qian, Chenyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2906 - 2940
  • [38] Global Well-posedness of the 3D Generalized Rotating Magnetohydrodynamics Equations
    Wei Hua WANG
    Gang WU
    ActaMathematicaSinica, 2018, 34 (06) : 992 - 1000
  • [39] Global well-posedness for the 3D Newton-Boussinesq equations
    Wu, Lili
    ARMENIAN JOURNAL OF MATHEMATICS, 2016, 8 (01): : 58 - 67
  • [40] GLOBAL WELL-POSEDNESS OF A 3D MHD MODEL IN POROUS MEDIA
    Titi, Edriss S.
    Trabelsi, Saber
    JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04): : 621 - 637