Machine Learning Techniques for Solving Constrained Engineering Problems

被引:0
|
作者
Garbaya, Amel [1 ]
Kallel, Imen [1 ]
Fakhfakh, Mourad [1 ]
Siarry, Patrick [2 ]
机构
[1] Univ Sfax, ESSE Lab, ENETcom, Sfax, Tunisia
[2] Univ Paris Est Creteil, Creteil, France
来源
2022 2ND INTERNATIONAL CONFERENCE ON INNOVATIVE RESEARCH IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY (IRASET'2022) | 2022年
关键词
Machine learning; Benchmark Functions; Engineering design problems; MSE; RMSE; MAE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the application of the supervised machine learning technique. The main objective is to construct models of objective functions. Sixteen different varieties of benchmark test functions and three well-known engineering design problems are evaluated by machine learning technique. The Artificial Neural Networks (ANNs) technique is used for constructing models. For the sake of accuracy check, three metrics are used; Mean Square Error (MSE), Root Mean Square Error (RMSE) and Maximum Absolute Error (MAE).
引用
收藏
页码:967 / 970
页数:4
相关论文
共 50 条
  • [1] Machine Learning Techniques for Solving Classification Problems with Missing Input Data
    Garcia-Laencina, Pedro J.
    Sancho-Gomez, Jose-Luis
    Figueiras-Vidal, Anibal R.
    WMSCI 2008: 12TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS, 2008, : 12 - +
  • [2] Solving System Problems with Machine Learning
    Stoica, Ion
    STUDIES IN INFORMATICS AND CONTROL, 2019, 28 (02): : 119 - 132
  • [3] UNIFY: A unified policy designing framework for solving integrated Constrained Optimization and Machine Learning problems
    Silvestri, Mattia
    De Filippo, Allegra
    Lombardi, Michele
    Milano, Michela
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [4] An overview of machine learning techniques in constraint solving
    Andrei Popescu
    Seda Polat-Erdeniz
    Alexander Felfernig
    Mathias Uta
    Müslüm Atas
    Viet-Man Le
    Klaus Pilsl
    Martin Enzelsberger
    Thi Ngoc Trang Tran
    Journal of Intelligent Information Systems, 2022, 58 : 91 - 118
  • [5] An overview of machine learning techniques in constraint solving
    Popescu, Andrei
    Polat-Erdeniz, Seda
    Felfernig, Alexander
    Uta, Mathias
    Atas, Muslum
    Viet-Man Le
    Pilsl, Klaus
    Enzelsberger, Martin
    Thi Ngoc Trang Tran
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2022, 58 (01) : 91 - 118
  • [6] Engineering problems in machine learning systems
    Hiroshi Kuwajima
    Hirotoshi Yasuoka
    Toshihiro Nakae
    Machine Learning, 2020, 109 : 1103 - 1126
  • [7] Engineering problems in machine learning systems
    Kuwajima, Hiroshi
    Yasuoka, Hirotoshi
    Nakae, Toshihiro
    MACHINE LEARNING, 2020, 109 (05) : 1103 - 1126
  • [8] Dynamic Random Walk and Dynamic Opposition Learning for Improving Aquila Optimizer: Solving Constrained Engineering Design Problems
    Varshney, Megha
    Kumar, Pravesh
    Ali, Musrrat
    Gulzar, Yonis
    BIOMIMETICS, 2024, 9 (04)
  • [9] Machine learning techniques in magnetic levitation problems
    Arrayas, Manuel
    Trueba, Jose L.
    Uriarte, Carlos
    CHAOS SOLITONS & FRACTALS, 2023, 167
  • [10] Machine learning techniques for sequential learning engineering design optimisation
    Humphrey, L. R.
    Dubas, A. J.
    Fletcher, L. C.
    Davis, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2024, 66 (02)