Evolutionary Quasi-Variational-Hemivariational Inequalities I: Existence and Optimal Control

被引:17
作者
Zeng, Shengda [1 ,2 ]
Motreanu, Dumitru [3 ,4 ]
Khan, Akhtar A. [5 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Peoples R China
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Yulin Normal Univ, Coll Sci, Yulin 537000, Guangxi, Peoples R China
[4] Univ Perpignan, Dept Math, F-66860 Perpignan, France
[5] Rochester Inst Technol, Sch Math Sci, Rochester, NY 14623 USA
基金
欧盟地平线“2020”;
关键词
Evolutionary quasi-variational-hemivariational inequality; surjectivity theorems; Kuratowski upper limit; optimal control; NUMERICAL-ANALYSIS; INVERSE PROBLEMS; REGULARIZATION; IDENTIFICATION;
D O I
10.1007/s10957-021-01963-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study a nonlinear evolutionary quasi-variational-hemivariational inequality (in short, (QVHVI)) involving a set-valued pseudo-monotone map. The central idea of our approach consists of introducing a parametric variational problem that defines a variational selection associated with (QVHVI). We prove the solvability of the parametric variational problem by employing a surjectivity theorem for the sum of operators, combined with Minty's formulation and techniques from the nonsmooth analysis. Then, an existence theorem for (QVHVI) is established by using Kluge's fixed point theorem for set-valued operators. As an application, an abstract optimal control problem for the (QVHVI) is investigated. We prove the existence of solutions for the optimal control problem and the weak sequential compactness of the solution set via the Weierstrass minimization theorem and the Kuratowski-type continuity properties.
引用
收藏
页码:950 / 970
页数:21
相关论文
共 45 条
[1]   NUMERICAL ANALYSIS OF A HYPERBOLIC HEMIVARIATIONAL INEQUALITY ARISING IN DYNAMIC CONTACT [J].
Barboteu, Mikael ;
Bartosz, Krzysztof ;
Han, Weimin ;
Janiczko, Tomasz .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) :527-550
[2]  
Brezis H., 2010, Functional Analysis, Sobolev Spaces and Partial Differential Equations
[3]  
Browder F. E., 1972, J. Funct. Anal, V11, P251, DOI DOI 10.1016/0022-1236(72)90070-5
[4]  
Carl S, 2007, SPRINGER MONOGR MATH, P1
[5]  
Clarke F. H., 1990, Classics in applied mathematics), V5
[6]   Nontrivial solutions for resonant hemivariational inequalities [J].
Denkowski, Z ;
Gasinski, L ;
Papageorgiou, N .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 34 (03) :317-337
[7]  
Denkowski Z., 2003, INTRO NONLINEAR ANAL, DOI [10.1007/978-1-4419-9156-0, DOI 10.1007/978-1-4419-9156-0]
[8]   VI-constrained hemivariational inequalities: distributed algorithms and power control in ad-hoc networks [J].
Facchinei, Francisco ;
Pang, Jong-Shi ;
Scutari, Gesualdo ;
Lampariello, Lorenzo .
MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) :59-96
[9]  
Gasinski L., 2008, MATH NACHR, V281, P1728, DOI DOI 10.1002/MANA.200510710
[10]   Existence results for evolutionary inclusions and variational-hemivariational inequalities [J].
Gasinski, Leszek ;
Migorski, Stanislaw ;
Ochal, Anna .
APPLICABLE ANALYSIS, 2015, 94 (08) :1670-1694