The Euler-Riemann zeta function in some series formulae and its values at odd integer points

被引:0
作者
Stevanovic, Milorad R. [1 ]
Petrovic, Predrag B. [1 ]
机构
[1] Univ Kragujevac, Fac Tech Sci Cacak, Svetog Save 65, Cacak 32000, Serbia
关键词
Riemann zeta function; Odd integer; Raabe's integral; Abel's criteria; Bernoulli numbers;
D O I
10.1016/j.jnt.2017.05.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper presents formulae for certain series involving the Riemann zeta function. These formulae are generalizations, in a natural way, of well known formulae, originating from Leonhard Euler. Formulae that existed only for initial values n = 0,1 are now found for every natural n. Relevant connections with various known results are also pointed out. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:769 / 786
页数:18
相关论文
共 16 条
[1]  
[Anonymous], B AM MATH SOC
[2]  
[Anonymous], 1847, J REINE ANGEW MATH
[3]  
[Anonymous], 1923, TRAITE ELEMENTAIRE N
[4]  
[Anonymous], MESSENGER MATH
[5]  
[Anonymous], MATH STUDENT
[6]  
Ashcroft N W., 2003, Solid State Physics
[7]   Numerical computation of the Riemann zeta function and prime counting function by using Gauss-Hermite and Gauss-Laguerre quadratures [J].
Babolian, E. ;
Hajikandi, A. Arzhang .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (15) :3420-3429
[8]  
Choi J., 2014, ABSTR APPL ANAL, V2014
[9]  
Connon DF, 2012, INT J MATH COMPUT SC, V7, P11
[10]  
Erdelyi A., 1953, Higher Transcendental Functions