Stability Analysis of Discontinuous Galerkin Approximations to the Elastodynamics Problem

被引:26
作者
Antonietti, Paola F. [5 ]
de Dios, Blanca Ayuso [2 ,3 ,4 ]
Mazzieri, Ilario [5 ]
Quarteroni, Alfio [1 ,5 ]
机构
[1] Ecole Polytech Fed Lausanne, CMCS, Stn 8, CH-1015 Lausanne, Switzerland
[2] Tech Univ Hamburg, Inst Math, Schwarzenberg Campus 3, D-21073 Hamburg, Germany
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, I-40126 Bologna, Italy
[5] Politecn Milan, MOX, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
关键词
Discontinuous Galerkin methods; Elastodynamics equation; Stability and error analysis; SPECTRAL-ELEMENT METHOD; ELASTIC-WAVE PROPAGATION; UNSTRUCTURED MESHES; SIMULATION; EARTHQUAKE; EQUATIONS; 2D;
D O I
10.1007/s10915-015-0132-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider semi-discrete discontinuous Galerkin approximations of both displacement and displacement-stress formulations of the elastodynamics problem. We prove the stability analysis in the natural energy norm and derive optimal a-priori error estimates. For the displacement-stress formulation, schemes preserving the total energy of the system are introduced and discussed. We verify our theoretical estimates on two and three dimensions test problems.
引用
收藏
页码:143 / 170
页数:28
相关论文
共 54 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
[Anonymous], 562013 MOX
[3]   Non-conforming high order approximations of the elastodynamics equation [J].
Antonietti, P. F. ;
Mazzieri, I. ;
Quarteroni, A. ;
Rapetti, F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 :212-238
[4]   High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation [J].
Antonietti, Paola F. ;
Marcati, Carlo ;
Mazzieri, Ilario ;
Quarteroni, Alfio .
NUMERICAL ALGORITHMS, 2016, 71 (01) :181-206
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[7]   Locking-free Reissner-Mindlin elements without reduced integration [J].
Arnold, Douglas N. ;
Brezzi, Franco ;
Falk, Richard S. ;
Marini, L. Donatella .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3660-3671
[8]  
Brenner SC, 2004, MATH COMPUT, V73, P1067
[9]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[10]   WAVE-PROPAGATION SIMULATION IN AN ELASTIC ANISOTROPIC (TRANSVERSELY ISOTROPIC) SOLID [J].
CARCIONE, JM ;
KOSLOFF, D ;
KOSLOFF, R .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1988, 41 :319-345