Novel conditions for soliton breathers of the complex modified Korteweg-de Vries equation with variable coefficients

被引:15
作者
Serkin, V. N. [1 ]
Belyaeva, T. L. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Ave 4 Sur 104, Puebla 72001, Mexico
[2] Univ Autonoma Estado Mexico, Ave Inst Literar 100, Toluca 50000, Mexico
来源
OPTIK | 2018年 / 172卷
关键词
Complex modified Korteweg-de Vries; Breather solutions; General conditions for soliton breather solutions; KDV-MKDV EQUATION; GENERALIZED KDV; TRANSFORMATION; DISPERSION; DERIVATION; MODEL;
D O I
10.1016/j.ijleo.2018.07.139
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We reveal novel unexpected conditions for soliton breathers of the generalized complex modified Korteweg-de Vries equation with variable coefficients and the loss (or gain) term (vc cmKdV). Novel relations between spectral parameters of two solitons giving rise to the breather substantially extend the well-known constraints for canonical soliton breathers. This finding allows us to systematically construct the variety of soliton breather solutions on a zero background of the considered model. These generalized breathers move with varying amplitudes and velocities adapted to variations of the dispersion, nonlinearity, and gain or losses. Among other things, we establish that both the standing generalized breathers and envelope breathers exist as well.
引用
收藏
页码:1117 / 1122
页数:6
相关论文
共 45 条
[1]  
Ablowitz M. J., 1981, SIAM Studies in Applied Mathematics, V4, DOI 10.1137/1.9781611970883
[2]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[3]  
[Anonymous], 2000, NONLINEAR SCI DAWN 2
[4]   Wave-particle duality of solitons and solitonic analog of the Ramsauer-Townsend effect [J].
Belyaeva, T. L. ;
Serkin, V. N. .
EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (06)
[5]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[6]   Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients [J].
Biswas, Anjan .
NONLINEAR DYNAMICS, 2009, 58 (1-2) :345-348
[7]   New solitary and optical wave structures to the (1+1)-dimensional combined KdV-mKdV equation [J].
Bulut, Hasan ;
Sulaiman, Tukur A. ;
Baskonus, Haci Mehmet ;
Sandulyak, Anna A. .
OPTIK, 2017, 135 :327-336
[8]   NON-PROPAGATING SOLITONS OF THE NONISOSPECTRAL AND VARIABLE-COEFFICIENT MODIFIED KDV EQUATION [J].
CHAN, WL ;
LI, KS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (03) :883-902
[9]   Single and combined optical solitons with third order dispersion in Kerr media [J].
Cheemaa, Nadia ;
Mehmood, Syed Amer ;
Rizvi, Syed Tahir Raza ;
Younis, Muhammad .
OPTIK, 2016, 127 (20) :8203-8208
[10]   GENERAL DERIVATION OF BACKLUND TRANSFORMATIONS FROM INVERSE SCATTERING PROBLEMS [J].
CHEN, HH .
PHYSICAL REVIEW LETTERS, 1974, 33 (15) :925-928