Homogeneous weights and exponential sums

被引:10
作者
Voloch, JF
Walker, JL [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S1071-5797(03)00007-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a formula as an exponential sum for a homogeneous weight defined by Constantinescu and Heise (Problems Inform. Transmission 33 (1998) 208) in the case of Galois rings (or equivalently, rings of Witt vectors) and use this formula to estimate the weight of codes obtained from algebraic geometric codes over rings. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:310 / 321
页数:12
相关论文
共 15 条
[1]  
BLACHE R, 2001, BOUNDS EXPONENTIAL S
[2]   Construction of a (64,237,12) Code via Galois Rings [J].
Calderbank A.R. ;
Mcguire G. .
Designs, Codes and Cryptography, 1997, 10 (2) :157-165
[3]   Z2k-Linear codes [J].
Carlet, C .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1543-1547
[4]  
CONSTANTINESCU I, 1998, PROB INFOR TRANSMISS, V33, P208
[5]   Degrees of the elliptic Teichmuller lift [J].
Finotti, LRA .
JOURNAL OF NUMBER THEORY, 2002, 95 (02) :123-141
[6]   Gray isometries for finite chain rings and a nonlinear ternary (36,312,15) code [J].
Greferath, M ;
Schmidt, SE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) :2522-2524
[7]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[8]  
Honold T., 1999, Problems of Information Transmission, V35, P205
[9]   Characterizations of finite Frobenius rings [J].
Honold, T .
ARCHIV DER MATHEMATIK, 2001, 76 (06) :406-415
[10]  
LUBIN J, 1964, UNPUB P WOODS HOL SU